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Abstract

We present the first dynamic shortest paths al-
gorithms that make any progress beyond a long-
standing O(n) update time barrier (while maintain-
ing a reasonable query time), although it is only
progress for not-too-sparse graphs. In particular, we
obtain new decremental algorithms for two approx-
imate shortest-path problems in unweighted, undi-
rected graphs. Both algorithms are randomized (Las
Vegas).

• Given a source s, we present an algorithm that
maintains (1 + ε)-approximate shortest paths
from s with an expected total update time of

Õ(n2+O(1/
√

logn)) over all deletions (so the amor-

tized time is about Õ(n2/m)). The worst-
case query time is constant. The best previ-
ous result goes back three decades to Even and
Shiloach [16] and Dinitz [12]. They show how to
decrementally maintain an exact shortest path
tree with a total update time of O(mn) (amor-
tized update time O(n)). Roditty and Zwick [22]
have shown that O(mn) is actually optimal for
exact paths (barring a better combinatorial algo-
rithm for boolean matrix multiplication), unless
we are willing to settle for a Ω(n) query time. In
fact, until now, even approximate dynamic algo-
rithms were not able to go beyond O(mn).

• For any fixed integer k ≥ 2, we present
an algorithm that decrementally maintains a
distance oracle (for all pairs shortest dis-
tances) with a total expected update time of

Õ(n2+1/k+O(1/
√

logn)) (amortized update time

about Õ(n2+1/k/m). The space requirement is
only O(m+ n1+1/k), the stretch of the returned
distances is at most 2k − 1 + ε, and the worst-
case query time is O(1). The best previous result
of Roditty and Zwick [21] had a total update

time of Õ(mn) and a stretch of 2k − 1. Note
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that our algorithm implicitly solves the decre-
mental all-pairs shortest path problem with the
same bounds; the best previous approximation
algorithm of Roditty and Zwick [21] returned
(1 + ε) approximate distances, but used O(n2)

space, and required Õ(mn) total update time.
As with the previous problem, our algorithm is
the first to make progress beyond the O(mn) to-
tal update time barrier while maintaining a small
query time.

We present a general framework for accelerating
decremental algorithms. In particular, our main idea
is to run existing decremental algorithms on a sparse
subgraph (such as a spanner or emulator) of the graph
rather than on the original graph G. Although this is
a common approach for static approximate shortest-
path problems, it has never been used in a decremen-
tal setting because maintaining the subgraph H as
edges are being deleted from G might require insert-
ing edges into H, thus ruining the “decrementality”
of the setting. We overcome this by presenting an
emulator whose maintenance only requires a limited
number of well-behaved insertions.

In other words, we present a general technique
for running decremental algorithms on a sparse sub-
graph of the graph. Once our framework is in place,
applying it to any particular decremental algorithm
only requires trivial modifications; most of the work
consists of showing that these algorithms as they
are still work in our restricted fully dynamic setting,
where we encounter not just arbitrary deletions (as
in the original setting), but also restricted insertions.
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1 Introduction

1.1 The Problem Dynamic algorithms are used
to model settings that change over time. We study
the problem of maintaining shortest path informa-
tion as edges are being inserted and deleted from
the graph. The objective of a dynamic single source
shortest paths (SSSP) algorithm is to efficiently
process an online sequence of delete, insert, and
query operations. Each delete operation removes
a single edge from the underlying graph, while an
insert operation adds an edge. A query operation
can ask for the shortest distance in the current graph
between the source and any other vertex. In dynamic
all pairs shortest paths (APSP), a query can ask for
the shortest distance between any pair of vertices. A
dynamic algorithm is said to be decremental if it can
only process delete operations, incremental if it can
only process insert operations, and fully dynamic if
it can process both. Note that the naive approach
to all these problems is to recompute shortest paths
from scratch after each update. This yields an

update time of Õ(m) for dynamic SSSP, and Õ(mn)
for APSP.

The problem of maintaining single source
shortest paths under deletions was the first dynamic
problem studied in theoretical computer science. Not
only it is interesting in and of itself, but it arises as
a subproblem in many other decremental and fully
dynamic algorithms ([18, 6, 21, 22, 7]). In 1981, Even
and Shiloach [16] presented a decremental SSSP
algorithm for undirected, unweighted graphs with
O(1) query time and a total update time of O(mn)
over all deletions (so the amortized update time is
O(n)). Around the same time, Dinitz [12] indepen-
dently presented a similar result, but it was written
in Russian and not known in the west. King [18]
later extended the O(mn) bound to directed graphs,
and King and Thorup [19] presented a technique
that allows us to implement this algorithm using less
space.

Achieving an o(mn) total update time (and
reasonable query time) for decremental SSSP has
been a long-standing open problem, but no progress
has been made in the last three decades. Roditty and
Zwick [22] provide an explanation for this by showing
that the incremental and decremental unweighted
SSSP problems are at least as hard as several
natural static problems such as Boolean matrix
multiplication and the problem of finding all edges
of a graph that are contained in triangles. Obtaining
a combinatorial Boolean matrix multiplication
algorithm whose running time is O((mn)1−ε + n2),
or O(n3−ε), for some ε > 0, is a major open problem.

In contrast, a rich body of the
STOC/FOCS/SODA literature has considered

the problem of dynamic all-pairs shortest paths.
Ausiello et al. [2] obtained an incremental APSP
algorithm for unweighted directed graphs with a
total running time of O(n3 log n). Henzinger and
King [17] presented a decremental APSP algorithm
for directed unweighted graphs whose total running

time, over all deletions, is Õ(mn
2

t + mn), but whose
query time is O(t). King [18] presented two fully dy-
namic APSP algorithms for unweighted graphs. The

first achieves an amortized update time of Õ(n2.5),
while the second is a 1 + ε approximation algorithm

with amortized update time Õ(n2) (query times are
constant). Demetrescu and Italiano [11] presented
a fully dynamic algorithm for a directed graph G
where each edge can have at most S different real

values; the amortized update time is Õ(n2.5
√
S).

The big breakthrough came in STOC 2003,
where Demetrescu and Italiano [10] presented a fully
dynamic APSP algorithm for directed graphs with
arbitrary non-negative real edge weights with an

amortized update time of Õ(n2). Thorup [23] slightly
improved on the update time, and extended the
algorithm to work for negative weights. Thorup [24]
also used this algorithm together with other ideas

to achieve a worst-case update time of Õ(n2.75).
Baswana et al. [4] presented a decremental APSP
algorithm for unweighted directed graphs with a

total update time of Õ(n3) (amortized update time

Õ(n3/m)).
This leaves us with several solid barriers.

Roditty and Zwick [22] show that we are unlikely
beat the O(mn) total update time for exact decre-
mental SSSP. Beating the O(n2) update time for
fully dynamic APSP also seems difficult because
any algorithm that explicitly maintains the distance
matrix requires at least Ω(n2) time per update.
Finally, although this barrier seems less solid, no
one has been able to achieve an o(n3) algorithm
for decremental APSP. However, there exist several
approximation algorithms that break through these
barriers.

Baswana et al. [4] presented a (1 + ε) ap-
proximation algorithm for decremental APSP in
unweighted, directed graphs with a total update

time of Õ(n2
√
m). In [5], the same authors presented

several decremental algorithms for undirected graphs,
such as a 3-approximate algorithm with amortized

time Õ(n10/9), and a 7-approximate algorithm with

amortized update time Õ(n28/27). Roditty and
Zwick [21] presented two improved algorithms for
unweighted, undirected graphs. The first was a
(1 + ε)-approximate decremental APSP algorithm
with a constant query time and a total update time

of only Õ(mn) (amortized update time Õ(n)). The
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second algorithm achieved a worse approximation
bound of 2k− 1 (2 ≤ k ≤ log(n)), but had the added

advantage of only using Õ(m + n1+1/k) space. Re-
cently, Bernstein [7] presented a (2 + ε)-approximate
fully dynamic APSP algorithm for weighted, undi-
rected graphs with a O(log log log(n)) query time
and a close to linear update time (almost, but not

quite Õ(m)).

1.2 Our Contributions Although approximation
has been used to develop several faster dynamic al-
gorithms, none have been able to beat the long-
standing O(mn) total update time barrier for decre-
mental SSSP. We present the first decremental al-
gorithms which show that improvements are possi-
ble beyond O(mn). Our first result is a decremental
(1 + ε) approximate algorithm for decremental SSSP
with O(1) query time and a total update time close

to Õ(n2) (amortized update time Õ(n2/m)). Tech-

nically, it is actually O(n2+O(1/
√

log(n))). Our sec-
ond result is a (2k − 1 + ε) approximate decremental
APSP algorithm with O(k) query and total update

time O(n2+1/k+O(1/
√

log(n))) (2 ≤ k ≤ log(n) is a
parameter of our choosing). The space requirement

is only Õ(m + n1+1/k). Both results apply to un-
weighted undirected graphs.

Our approach relies on extending a common
tool used in static algorithms to the dynamic set-
ting. Many approximate shortest paths algorithms in
undirected graphs start by constructing a sparse em-
ulator (or spanner) of the graph (i.e another graph
on the same vertex set with a similar shortest dis-
tance structure – see Definition 2.1 for a formal de-
scription), and then computing shortest paths in the
sparse emulator rather than in the original graph
(see [3, 8, 1, 13, 9, 15, 14, 27, 25]). However, this
approach has never been used in a decremental set-
ting. The reason for this is that as edges in G are
being deleted, we also have to change the edges in
the emulator H, and a deletion in G can lead to in-
sertions into H. Thus, we cannot run decremental
algorithms on our emulator, because from the per-
spective of H, we are not in a decremental setting.

Our main contribution is an emulator that
possesses several novel properties relating to how it
changes as edges in G are being deleted. The emu-
lator itself is basically identical to one used by Bern-
stein [7], which is in turn a modification of a spanner
developed by Thorup and Zwick [26]. However, the
properties we prove are entirely new to this paper. In-
tuitively, we show that insertions into H are relatively
rare and well behaved, so although from the perspec-
tive of H we are no longer in a purely decremental
setting, we are in a restricted fully dynamic setting

where we allow arbitrary deletions and restricted in-
sertions.

We then show that that many existing decre-
mental algorithms can run in this restricted fully dy-
namic setting. In other words, this paper presents a
general technique for running decremental algorithms
on an emulator. We apply it to the two state of
the art decremental algorithms, but it could poten-
tially be applied to others as they come up. In fact,
once our framework is in place, the modifications to
specific algorithms are trivial: it is only the analy-
sis that requires work. In particular, we show that
these decremental algorithms only rely on a few spe-
cific properties of the decremental setting – properties
which are preserved in our restricted fully dynamic
setting.

The rest of this paper is organized as follows.
In the next section we introduce preliminaries. In
Section 3 we present our emulator and analyze its
special properties. We then show in Section 4 how
our techniques can be used to obtain a faster decre-
mental SSSP algorithm. In Section 5 we present our
improved decremental distance oracle.

2 Preliminaries

Let G = (V,E) be our unweighted, undirected graph.
For any pair x, y ∈ V , let π(x, y) be the shortest x−y
path, and let δ(x, y) be the weight of π(x, y). We
say that an algorithm outputs an α approximation
if given any query input x, y it outputs a value in
[δ(x, y), αδ(x, y)]. Throughout the paper, ε refers to
an arbitrary positive constant < 1.

Definition 2.1. An emulator H of G is a graph
with the same vertex set as G, but with different
(possibly weighted) edges. We let wH(x, y) be the
weight of edge (x, y) in H, we let πH(x, y) be the
shortest x − y path in H, and we let δH(x, y) be the
length of this path. We say that H is an (α, β)-
emulator if for any pair of vertices x, y we have
δ(x, y) ≤ δH(x, y) ≤ αδ(x, y) + β. We say that H is
an α-emulator if it is an (α, 0)-emulator. (Remark:
Many approximate graph algorithms use spanners,
which are emulators whose edge set must be a subset
of the original edges E. However, we stick to the more
general definition of emulators.)

2.1 An Existing Decremental SSSP Algo-
rithm We rely on an existing algorithm of King [18],
which given a directed graph G with positive integer
edge weights, and a source s, decrementally main-
tains a shortest path tree up to distance d in a total
of O(md) time (see Section 2.1 of [18]). The main
property of King’s algorithm is that as edges in G
are being deleted, it only explores the edges incident
on a vertex v when the distance from s to v changes.
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Moreover, it only explores the edges of v a constant
number of times per distance change. This implies
a total update time of O(md) because the distance
to a vertex v can increase at most d times before it
exceeds d. (Note that in unweighted graphs d ≤ n,
so O(md) = O(mn))

2.2 The Techniques of Thorup and Zwick
Both of our results rely on techniques used in the
approximate distance oracle of Thorup and Zwick
[25], which we now review.

Definition 2.2. Let V = A0 ⊇ A1 ⊇ ... ⊇ Ak−1 ⊇
Ak = ∅ be sets of vertices (2 ≤ k ≤ log(n) is a
parameter of our choosing). In particular, we start
with A0 = V , and every vertex in Ai is independently
sampled and put into Ai+1 with probability 1/n1/k.
We refer to the indices 1, 2, ..., k as vertex priorities,
where the priority of v is i if and only if v ∈ Ai\Ai+1.

Definition 2.3. Define the i-witness of v, or pi(v),
to be vertex in Ai that is nearest to v: pi(v) =
argminw∈Ai

(δ(v, w)). To break ties, we pick the
pi(v) that survives to the set Aj of largest index
(equivalently, it is contained in the most sets Aj).
Define δ(v,Ai) to be δ(v, pi(v)).

Definition 2.4. Given a vertex v ∈ Ai − Ai+1,
we define the cluster of v to be C(v) = {w ∈
V | δ(w, v) < δ(w,Ai+1)}. We define the bunch
of v to be B(v) = {w ∈ V | v ∈ C(w)}

Lemma 2.1. [25] With high probability, the size of

every bunch is Õ(kn1/k) = Õ(n1/k). Thus, the size

of all the bunches (or all the clusters) is Õ(kn1+1/k).

Since the above lemma is true with high prob-
ability, we assume for the rest of this paper that it
always holds.

Theorem 2.1. [25] Consider the oracle that for ev-
ery vertex v stores C(v) and all witnesses pi(v)(i ≤
k − 1). With high probability, this oracle requires
O(mn1/k) construction time and O(n1+1/k) space
(recall: k, the number of vertex priorities, is a pa-
rameter of our choosing). Given any query (x, y) it
can return a (2k−1) approximation to δ(x, y) in O(k)
time.

Roditty and Zwick [21] showed how to efficiently
maintain this oracle in a decremental setting. Note
that because the set hierarchy A0 ⊇ A1 ⊇ A2 ⊇ ... ⊇
Ak is picked in an oblivious manner, without ever
looking at the graph G = (V,E), we can use the same
set hierarchy for all the versions of the graph. That
is, although the clusters might change as G changes,
the sets Ai themselves remain the same.

Theorem 2.2. [21] Let G be an undirected graph
with positive edge weights. Given any distance d,
we can decrementally maintain all clusters and wit-
nesses up to distance d in an expected total time of

O(mdn1/k) over all deletions in G. By “up to dis-
tance d” we mean that we do not maintain witnesses
pi(v) or cluster members w ∈ C(v) whose shortest
distance from v is greater than d.

3 Using an Emulator

A common approach to solving approximate shortest
path problems on dense graphs is to avoid working
with the original graph G, and work with a sparse α-
emulator H instead. We follow this basic guideline,
but it is much more difficult in a dynamic setting
because as we delete edges in G, we also need change
the edges inH in order for it to remain an α-emulator.

As mentioned in the introduction, the main
issue we run into as that even though we only delete
edges in G, maintaining H during these deletions
sometimes involves inserting edges into H. So it
is not enough to just present a suitable emulator
and then run existing decremental algorithms on
H; when working with H, we are no longer in a
purely decremental setting. We overcome this by
proving that insertions into H are relatively rare and
well-behaved, and then showing that many existing
decremental algorithms can efficiently handle a small
number of such well-behaved insertions.

The emulator we use is basically identical to
an emulator used by Bernstein [7], which is in turn a
modification of one developed by Thorup and Zwick
[26]. Both are based upon the techniques covered in
Section 2.2. Note that although the emulator itself is
not new, we prove several new properties relating to
how it changes as edges in G are deleted.

3.1 The Emulator We start with an emulator of
Thorup and Zwick [26] (they actually used a spanner,
but for simplicity, we express it as an emulator).

Theorem 3.1. [26] Let H be the following undi-
rected emulator: for every vertex v, and every w ∈
C(v), H contains an edge of weight δ(v, w) from v to
w. Also, for every vertex v and every vertex priority
i, H contains an edge of weight δ(v, pi(v)) from v to
pi(v). Then, H contains O(kn1+1/k) edges and is a
((1 + ε/2), ζ) emulator, where ζ = O((6/ε)k). (Tech-
nical note: Lemma 2.3 of Thorup and Zwick works
for any ε, so plugging ε/2 into their lemma we get
our claim. In particular, note that 2 + 2/(ε/2) – the
term in their lemma – is ≤ 6/ε because ε < 1).

Corollary 3.1. If δ(x, y) ≥ (2/ε)ζ (recall: ζ =
O((6/ε)k)) then δH(x, y) ≤ (1 + ε)δ(x, y)
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Proof. δH(x, y) ≤ (1 + ε/2)δ(x, y) + ζ ≤ (1 +
ε/2)δ(x, y) + (ε/2)δ(x, y) = (1 + ε)δ(x, y).

Bernstein [7] showed that the properties of H still
hold if we remove all heavy edges. We take advantage
of this, although for different reasons.

Definition 3.1. We define γ to be (24/ε)ζ (recall:
ζ = O((6/ε)k) is the additive error of H).

Theorem 3.2. [7] Let H be the same emulator as
in Theorem 3.1, except with all edges of weight ≥ γ
removed. Then, H has O(kn1+1/k) edges and is a
((1+ε), O((6/ε)k)) emulator. Even better, If δ(x, y) ≥
γ/2 then δH(x, y) ≤ (1+ε)δ(x, y) (no additive factor).

Proof. The proof is almost identical to one in [7],
and is given here for the sake of completeness. To
bound the approximation error of H, we let H ′ be
the original emulator without heavy edges removed.
We now break our proof into two possible cases.
If δ(x, y) ≤ γ/3, then we know that δH′(x, y) ≤
(1 + ε)γ/3 + ζ ≤ γ, so the path from x to y in H ′

never uses edges of length greater than γ, so this path
must also exist in H.

If δ(x, y) > γ/3 then we split π(x, y) into paths
of length dγ/12e. That is, we let y1 = x, we let y2 be
the vertex on π(x, y) that is at distance dγ/12e from
x, we let y3 be the vertex at distance dγ/12e from y2

and so on up to some yr. We define yr+1 = y. We
then let πi be the subpath of π(x, y) from yi to yi+1.

(Technical note: we choose yr in such a way
that dγ/12e ≤ w(πr) ≤ dγ/6e+1. This can always be
done because if we break π(x, y) into paths of length
dγ/12e, then the remainder left over will have length
≤ dγ/12e, so we can just concatenate this remainder
to the last path of length dγ/12e, thus yielding a path
of length ≤ 2 dγ/12e ≤ dγ/6e+ 1.)

Note that for any i we have w(πi) ≥ γ/12 ≥
(2/ε)ζ (see Definition 3.1 for ζ), so by the corollary of
Theorem 3.1 there exists a (1 + ε) approximate path
pi in H ′ (see Figure 1). But all of the pi have length
less than (1 + ε)(dγ/6e+ 1) < γ/3, so they must also
be in H (not just H ′). Thus, we consider the path
p = p1 ◦ p2 ◦ ... ◦ pr; this is an x − y path in H of
length ≤ (1 + ε)δ(x, y), which completes the proof.
See Figure 1.

Recall that the whole purpose of constructing a
sparse emulator H was to run all of our algorithms
on H instead of G. But as we delete edges from
G we also need to modify H so that it remains
a ((1 + ε), O((6/ε)k)) emulator. In particular, the
clusters and witnesses in G change as we delete edges,
so we need to maintain all of the C(v) and pi(v).

Lemma 3.1. We can decrementally maintain the em-
ulator in Theorem 3.2 in a total of O(mγn1/k) time

over all deletions in G. This stems from Theorem
2.2.

3.2 Dynamic Properties of H Although we use
an already existing emulator, we use it in an entirely
novel way; all of the analysis in this section is new
to this paper. Given a graph G, our approach is
to maintain a sparse emulator H, and run existing
decremental algorithms on H instead of on G. The
problem is that from the perspective of H, we are
not in a decremental setting; changes to G can cause
edge insertions into H. In particular, if a deletion in
G causes some δ(w,Ai) to increase, then this might
cause w to join some cluster C(v), which inserts edge
(v, w) into H.

Thus, if we are to run existing decremental
algorithms on H, we must extend these algorithms
to also handle insertions into H. The main difficulty
is that many decremental algorithms rely on the fact
that if we only allow edge deletions in an integer-
weighted graph, then the shortest distance between
any two vertices can change at most d times (over all
deletions to G) before this distance exceeds d. But
this is no longer true if we allow insertions because
the distance can slowly increase from 1 to d, and then
decrease back to 1 with just a single insertion.

As such, we do not know how to extend decre-
mental algorithms to work in a general fully dynamic
setting. But we show that in our specific case, even
though edges can be inserted into H, it is nonetheless
possible to give a good bound on the number of times
the distance between two vertices can change. This
allows us to extend many decremental algorithms to
work in our partially incremental setting.

Lemma 3.2. Letting H be the emulator in Theorem
3.2, then the number of edges inserted into H over all

deletions in G is Õ(kγn1+1/k) (with high probability).

Proof. By the definition of clusters, the only way a
deletion in G can cause an edge (v, w) to be inserted
into H is if the deletion causes δ(w,Ai) to increase
for some i, which in turn causes w to join C(v) (here,
v must have a priority (i−1)). Also, since all edges in
H have weight less than γ, δ(w,Ai) must have been
less than γ before the deletion in G.

But note that since all edges in G have weight
1, δ(w,Ai) can increase at most γ times before it
exceeds γ. Moreover, every time δ(w,Ai) increases,

at most Õ(kn1/k) edges (v, w) are inserted into H;
this is because (v, w) can only exist in H if w ∈
C(v), and at any time, w is contained in Õ(kn1/k)
clusters – see Lemma 2.1. Thus, for any vertex w
and any vertex priority i, the total number of edges
inserted into H on account of δ(w,Ai) increasing is

Õ(γkn1/k). But there are only O(kn) pairs (w, i),
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which leads to an Õ(k2γn1+1/k) upper bound on the
total number of edges inserted into H. A more careful

analysis reduces this to Õ(kγn1+1/k), but we omit the
details.

Lemma 3.3. If an edge (x, y) is inserted into H, then
before the insertion δH(x, y) ≤ 3γ. As such, the
insertion of any edge (x, y) into H can cause δH(x, y)
to decrease by at most 3γ.

Proof. We know that all edges in H have weight at
most γ, and we know that the weight of any edge
(x, y) in H is δ(x, y), so after the update δ(x, y) =
wH(x, y) ≤ γ. But recall that even though δH(x, y)
can decrease, δ(x, y) can only increase (edges are only
removed from the original graph G), so before the
update δ(x, y) ≤ wH(x, y) ≤ γ. But since H is a
((1+ ε), O((6/ε)k)) emulator, this implies that before
the update δH(x, y) ≤ (1 + ε)wH(x, y) +O((6/ε)k) ≤
(1 + ε)γ + εγ < 3γ.

Lemma 3.4. Given any two vertices x, y in H, the
number of times that δH(x, y) changes over all dele-

tions in G is Õ(kγ2n1+1/k) (with high probability).

Proof. Let ∆DEC refer to the total sum of dis-
tance changes to δH(x, y) caused by decremental up-
dates, and let ∆INC refer to the total sum of dis-
tance changes caused by incremental updates. So
if δH(x, y) changes from 4 to 9 to 2 to 5 to 1 then
∆INC = 7 + 4 = 11 and ∆DEC = 5 + 3 = 8. It is not
hard to see that δH(x, y) changes at most ∆DEC+∆INC

times.
Intuitively, ∆INC and ∆DEC must be about the

same because δH(x, y) cannot decrease by too much
without increasing at some point. In particular,
∆INC − n ≤ ∆DEC ≤ ∆INC + n because δH(x, y) can
never be smaller than 1 or larger than n. But we

know that ∆INC = Õ(kγ2n1+1/k) because Lemma 3.2

tells us that a total of Õ(kγn1+1/k) edges are inserted
into H, and Lemma 3.3 tells us that each of these
edges causes δH(x, y) to decrease by at most 3γ. So

∆INC = Õ(kγ2n1+1/k), and ∆DEC ≤ O(∆INC + n) =

Õ(kγ2n1+1/k), so ∆INC + ∆DEC = Õ(kγ2n1+1/k), as
desired.

We described our emulator H with respect to a pa-
rameter k of our choosing (k is the number of vertex

priorities). We now set k to be
√

log(n)/
√

log(6/ε),
which yields the following:

Definition 3.2. Define α =√
log(n)n

√
log(6/ε)/

√
log(n). Define β =

n
√

log(6/ε)/
√

log(n). Note that α, β, αβ and αβ2 are

all Õ(nO(1/
√

log(n))), which is very small.

Theorem 3.3. We can construct an emulator H
with the following properties. Note that H changes
as edges in G are deleted.

1. H always has Õ(αn) edges.
2. If δ(x, y) = Ω(β) then δH(x, y) ≤ (1 + ε)δ(x, y).
3. Every edge in H has weight at most O(β).
4. At most Õ(αβn) edges are inserted into H over

all deletions in G.
5. If a deletion in G causes edge (x, y) to be

inserted into H, then before the insertion,
δH(x, y) = O(β).

6. Given any two vertices x, y, δH(x, y) changes at

most Õ(αβ2n) times over all deletions in G.
7. H can be maintained in Õ(αβm) time over all

deletions in G.

4 Decremental Single Source Shortest Paths

We now present a (1 + ε)-approximate algorithm
for decremental single source shortest paths (SSSP )

that has a total update time of O(α2β3n2) = Õ(n2 ·
nO(1/

√
log(n))). Our basic approach is to construct

our sparse emulator H, and then run King’s decre-
mental SSSP algorithm [18] on H (see Section 2.1).
The only catch is that we have to show that King’s
algorithm can efficiently handle edge insertions into
H. Also, H only serves as a (1 + ε) emulator for
distances larger than β (see property 2 of Theorem
3.3), so we use a different (much simpler) approach
for small distances.

Recall that the key property of King’s decre-
mental algorithm is that we only explore the edges
incident on some vertex v when δ(s, v) changes (s
is the source). We show that it is easy to preserve
this property under insertions (in addition to dele-
tions) by mimicking the original procedure for dele-
tions. The basic idea is that when we insert an edge
(u, v), if δ(s, v) does not change then we stop. Other-
wise, we compute a shortest path tree from v, but we
truncate the procedure at any vertex whose shortest
distance from s remains unchanged. This intuition
leads to the following lemma, which can be viewed
also as a simplified version of the output sensitive
algorithm of Ramalingam and Reps [20].

Lemma 4.1. Given a source s, we can construct a
fully dynamic SSSP algorithm with the property that
we only explore the edges incident on a vertex v when
some update changes the shortest distance from s to
v (either by increasing or decreasing it). Every such
update causes us to explore the edges of v only a
constant number of times.

Proof. In order to extend King’s algorithm [18] to
handle insertions, we precisely state what informa-
tion the decremental version of the algorithm stores,
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and then show how to maintain this information un-
der insertions while satisfying the property of Lemma
4.1 (i.e. that the edges of a vertex are only scanned
if the distance to that vertex changes). Even though
our paper focuses on undirected graphs, we show how
to extend King’s algorithm for directed graphs with
positive weights, because this is no more complicated.

Fix some source s. Given any vertex v, let
δ(v) = δ(s, v). Let In(v) = {u | (u, v) ∈ E}, and let
Out(v) = {u | (v, u) ∈ E}. Naturally, King’s decre-
mental algorithm stores the shortest path tree itself,
along with parent/children pointers, and shortest dis-
tances. Also, for every vertex v it stores a min-heap
pred(v) that contains all vertices in In(v) except for
the parent of v: the key of a vertex u in pred(v) is
δ(u) +w(u, v). (Technical note: using a min-heap for
pred(v) yields a total update time of O(md log(n))
rather than O(md). King shows how to reduce this
to O(md), but for simplicity, we stick to a min-heap).

We now show how to maintain all this informa-
tion during an Insert(u, v). Note that our algorithm
for insertions never actually relies on pred(v), but
we must nonetheless show how to maintain pred(v)
under insertions so that future deletions can run
smoothly.

The algorithm is very simple: we basically
compute a shortest path tree from v, except that we
stop at any vertex whose distance from s has not
decreased. Note that every vertex w starts with a
value δ(w), the shortest distance before the insertion,
and that our algorithm modifies δ(w) if the insertion
causes the shortest distance to decrease. Through-
out the algorithm we let H refer to a min-heap which
is initially empty (H corresponds to the min-heap in
Dijkstra’s algorithm). See pseudocode below.
The above algorithm maintains all the necessary
information, and it is clear that we only explore the
edges incident on a vertex y if δ(y) has decreased.
This completes the proof.

Assuming an unweighted graph, this lemma yields a
total update time of O(mn) in a decremental setting
because the distance from s to any v can increase at
most n times. But the lemma yields no good bounds
in a fully dynamic setting because the distance from
s to v can potentially change many, many times.
However, in our specific setting, δH(x, v) changes a

total of Õ(αβ2n) times (property 6 of Theorem 3.3).
Thus, the edges of any vertex v are only scanned a

total of Õ(αβ2n) times (over all deletions in G). The
following lemma completes our analysis:

Lemma 4.2. If the edges of any vertex v (in H) are
scanned at most T times over all deletions in G (in

our case T = Õ(αβ2n)), then the total update time

over all vertices is Õ(αβnT ).

Figure 1: Insertions in King’s Algorithm

Insert(u, v):
H ← ∅
relax(u, v)
While H 6= ∅

x← delete min(H)
For All y ∈ Out(x)

relax(x, y)

relax(x, y):
If δ(x) + w(x, y) < δ(y)

δ(y)← δ(x) + w(x, y)
Make x the parent of y in the tree
Add the previous parent of y to pred(y)
H.insert(y, δ(y))

Else
Update key of x in pred(y)

Proof. In a static setting, the running time would
be Σv deg(v)T , which is easy to bound because
Σv deg(v) is at most twice the number of edges in
the graph. The problem is that in our dynamic
setting, the degree of a vertex in H changes over
time, and it is hard to bound the sum of different
degrees at different times. To overcome this, let
degMAX(v) be the total number of edges that are ever
incident on v (in H) during all deletions from G
(that is, include any edge (u, v) that exists at some
time). Our total update time is O(TΣv degMAX(v)).

But Σv degMAX(v) = Õ(αβn) because H starts with

Õ(αn) edges, and at most Õ(αβn) new edges are
inserted (properties 1 and 4 of Theorem 3.3). This
completes the proof.

As mentioned earlier, we maintain two different
shortest path trees: one for small distances, and one
for larger ones. Firstly, we use King’s original algo-
rithm to maintain a decremental shortest path tree in
G (from s) up to distance O(β) – this takes O(mβ)
time. Secondly, we use our extension of King’s al-
gorithm to maintain a shortest path tree from s in
H (for all distances). To compute an approximation
to some δ(s, v), we query in both trees, and return
the smaller of the two distances. If δ(s, v) = O(β)
then the first tree returns an exact distance, and if
δ(x, v) = Ω(β) then by property 2 of Theorem 3.3,
the second tree returns a (1+ ε) approximation. This
yields

Theorem 4.1. Given an unweighted, undirected
graph and a source s, we can construct a data struc-
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ture that decrementally maintains (1+ε) approximate
shortest distances from s while achieving the follow-
ing bounds: the worst case query time is constant,
and the total update time is (with high probability)

O(βm+ α2β3n2) = Õ(n2 · nO(1/
√

log(n)))

5 Decremental distance oracle

Roditty and Zwick [21] presented a decremental
distance oracle up to distance d with a total update
time of O(dmn1/k) (Theorem 2.2). In this section,
we apply our general framework and present the
following improvement:

Theorem 5.1. Let G be an unweighted, undirected
graph that undergoes a sequence of edge deletions,
and let k ≥ 2 be a fixed integer. We can construct
a data structure that decrementally maintains all-
pairs (2k−1+ε) shortest distances while maintaining
the following bounds: the worst case query time is
O(1), and with high probability, the space requirement
is O(m + n1+1/k), and the total update time is

Õ(α2β3n2+1/k+mn1/kβ) = Õ(n2+1/k ·nO(1/
√

log(n))).

Our construction is based on the emulator introduced
in Section 3. We barely modify the original algorithm
of Roditty and Zwick [21], but we must extend the
analysis to work in our non-decremental setting. Our
presentation is rather technical because the original
analysis itself is quite subtle, even in the purely decre-
mental setting. In adapting their proof to our new
setting, we face similar technical obstacles.

Roughly speaking, we would like to do the fol-
lowing. We maintain distances smaller than β di-
rectly with the decremental distance oracle of Roditty

and Zwick (total update time Õ(mn1/kβ)), while
maintaining distances larger than β using the em-
ulator. More specifically, we run the decremental al-
gorithm of Roditty and Zwick on the emulator rather
than on the original graph. Since the emulator has

only Õ(nα) edges, and the maximal depth is n, the

resulting total update time is Õ((αn)(n1/k)(n)) =

Õ(αn2+1/k).
This approach does not work as stated because

the data structure of Roditty and Zwick [21] only
supports edge deletions, but we know that edges can
be inserted into our emulator. Thus, just as with
King’s SSSP algorithm, we rely on the properties of
our emulator (see Theorem 3.3) to extend Roditty
and Zwick’s decremental algorithm to also work in
our partially incremental setting. Before doing so,
we need to review their original construction [21].

5.1 Decremental distance oracle of Roditty
and Zwick (See Section 2.2 for a review of defini-
tions). In order to decrementally maintain the static

distance oracle of Thorup and Zwick [25], one must,
for every vertex w, maintain C(w) (cluster mainte-
nance) and all the pi(w) (witness maintenance). Re-
call that the set hierarchy A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ak
is picked in an oblivious manner, without ever look-
ing at the graph G = (V,E), so we can use the same
set hierarchy for all versions of the graph.

Roughly speaking, Roditty and Zwick [21]
maintain each C(w) by maintaining a decremental
shortest path tree from w up to level d̄ = (2k − 1)d;
we can represent a cluster with a tree because if v is
in C(w), where w ∈ Ai −Ai+1, then so is any vertex
on the shortest path from v to w. Now, recall that
v ∈ C(w) implies that δ(w, v) < δ(v,Ai+1). We are in
a decremental setting, so both δ(w, v) and δ(v,Ai+1)
can only increase. However, the order relation be-
tween them can change many times, so vertices can
both join and leave C(w).

Since Roditty and Zwick maintain each C(w)
using the decremental shortest path tree of King [18]
(see Section 2.1), we know that the edges of v are
only scanned when the distance to v within some
cluster changes (i.e v ∈ C(w) and δ(v, w) changes).

By Lemma 2.1, v is in only Õ(n1/k) clusters at any
given time. Moreover, the distance to v within a
cluster can change at most d̄ times, so intuitively,
we want to argue that the edges of v are scanned at

most Õ(n1/kd̄) times.
Unfortunately, it is not this simple because

even though v is in Õ(n1/k) clusters at any given time,
it can belong to different clusters at different times, so
it is difficult to bound the overall number of clusters
in which it participates. Hence, Roditty and Zwick
used a more sophisticated analysis to bound the total
number of times that the edges of a given vertex are
scanned over all deletions. The proof was implicit in
their time analysis, but we provide an explicit proof
which is orientated toward our later improvements.
In the next section we will show that it is possible
to prove a similar lemma in our partially incremental
setting.

Lemma 5.1. For every v ∈ V and 0 ≤ i ≤ k − 1,
the expected total number of times the edges of v
are scanned, in all trees rooted at vertices of Ai, is

Õ(d̄n1/k).

Proof. Let w ∈ Ai \Ai+1. The edges of v are scanned
in C(w) once when v joins C(w) and then each
time δ(v, w) changes until v leaves C(w). We first
separately analyze the cost of joining new clusters.
In the decremental setting, v can only join C(w)
if δ(v,Ai+1) increases, which can happen at most

d̄ times. Each time, v joins Õ(n1/k) clusters (see
Lemma 2.1). Thus, the total number of times the
edges of v are scanned because of v joining a cluster
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is Õ(d̄n1/k).
We now turn to analyze the case where the

distance between v and the cluster center decreases.
Let wt,1, wt,2, . . . be the vertices of Ai arranged
in non-decreasing order of distance from v after
the t-th deletion. To resolve ties we arrange the
vertices in a non-decreasing lexicographic order of
(δt(v, w), δt+1(v, w)). Thus, if w and w′ have the
same distance from v at time t, and the next deletion
increases the distance to w′ but not to w, then w
appears before w′ in the ordering.

It follows from this ordering that for every
v ∈ V and j ≥ 1, the sequence δt(v, wt,j) is non-
decreasing. Furthermore, if δt(v, wt,j) < δt+1(v, wt,j)
then also δt(v, wt,j) < δt+1(v, wt+1,j). Note that
v ∈ Ct(wt,j) only if for every j′ < j we have that
wt,j′ is in Ai but not Ai+1. Because of how we
chose the sets Ai (see Definition 2.2), this implies
that v ∈ Ct(wt,j) with probability at most (1−p)j−1,

where p = n−1/k.
Let I = { (t, j) | δt(v, wt,j) < δt+1(v, wt,j) ≤

d̄ }. Clearly, the expected number of times the edges
of v are scanned, in all trees rooted at vertices of Ai,
is at most

∑
(t,j)∈I Pr[v ∈ Ct(wt,j)]. For each j, the

set I contains at most d̄ pairs of the form (t, j). (In
other words, the distance to the j-th closest vertex
to v increases at most d̄ times.) Thus

∑
(t,j)∈I Pr[v ∈

Ct(wt,j)] ≤ d̄
∑
j≥1(1 − p)j−1 ≤ d̄p−1 = d̄n1/k, as

required.

This implies that cluster maintenance requires a total

of Õ(mn1/kd) time in expectation. It is not hard
to show that witness maintenance can be done as
a part of cluster maintenance. The basic idea is
that while maintaining clusters, we can also maintain
bunches in the same time bounds because bunches
are just inverse clusters (see Definition 2.4). But
note that pi(v) is in B(v), and that in particular
pi(v) = argminw∈Ai

⋂
B(v)δ(v, w). This is easy to

return if we store each bunch as a union of k min-
heaps – one for each setAi (technical note: using min-
heaps might increase our running time by O(log(n)),
but it is easy to overcome this. Details omitted).

5.2 Proof of Theorem 5.1 Similarly to our
decremental SSSP algorithm, our construction of
decremental distance oracles is based on the sparse
emulator H introduced in Section 3 (its main proper-
ties are summarized in Theorem 3.3). The emulator
H only serves as a (1+ε)-emulator for distances larger
than β (property 2 of Theorem 3.3), so we maintain
distances smaller than β directly with the decremen-
tal distance oracle of Roditty and Zwick [21] (total

update time Õ(mn1/kβ)). For distances larger than
β, our approach is to maintain Roditty and Zwick’s

oracle for the sparse emulator H rather than for the
original graph G. We do so by extending their decre-
mental algorithm to also support insertions into H.
We focus on cluster maintenance because as described
in the previous section, witness maintenance can be
done in the same time bounds.

The main technical tool used in Roditty and
Zwick’s original algorithm is King’s decremental
SSSP algorithm [18] (see Section 2.1). In Lemma 4.1,
we extended King’s algorithm to handle insertions in
such a way that the edges incident on a vertex v are
scanned O(1) times per distance change to v. This al-
lows us to maintain our cluster trees under insertions,
but we must now analyze how these trees change over
time. In particular, we need to bound the number of
times that the edges of a vertex v are scanned by the
cluster maintenance.

Let w ∈ Ai. Recall that v ∈ C(w) if and only
if δ(w, v) < δ(v,Ai+1). Thus, whether v is in the
cluster of w depends on the order relation between
δ(v, w) and δ(v,Ai+1). This can obviously change as
a result of either δ(v, w) or δ(v,Ai+1) changing. We
deal with these two cases separately. Notice that as
opposed to Lemma 5.1, in the following two lemmas
we prove our results with high probability and not
in expectation. This is necessary because Lemma 4.2
requires a strict (not an expected) upper bound on
the number of times the edges of a vertex are scanned.

Lemma 5.2. For every v ∈ V and 0 ≤ i ≤ k − 1,
w.h.p, the total number of times the edges of v are
scanned in all trees rooted at vertices of Ai, as a result

of a change in δ(v,Ai+1), is Õ(n1+1/kαβ2).

Proof. Each time that δ(v,Ai+1) changes, v can

leave and join (w.h.p) a total of at most Õ(n1/k)
clusters (Lemma 2.1), so its edges are scanned at most

Õ(n1/k) times. Thus, we only need to bound the total
number of changes to δ(v,Ai+1). Consider a vertex
si+1 that is added to the graph and is connected to
the vertices of Ai+1 with edges of zero weight. It
is easy to see that δ(si+1, v) = δ(v,Ai+1). Using
the same arguments that are used in the proof of
Lemma 3.4, it is possible to show that δ(si+1, v)

changes at most Õ(nαβ2) times. Thus, the edges

of v are scanned at most Õ(n1+1/kαβ2) times.

Lemma 5.3. For every v ∈ V and 0 ≤ i ≤ k − 1,
w.h.p, the total number of times the edges of v are
scanned in all trees rooted at vertices of Ai, as a
result of a change in the distance between v and the
cluster center ( i.e δ(v, w) changes and v ∈ C(w)), is

Õ(n1+1/kαβ2).

Proof. As in Lemma 5.1, let wt,1, wt,2, . . . be the
vertices of Ai arranged in non-decreasing order of
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distance from v after the t-th deletion. Note that
for every j ≥ 1, the sequence δt(v, wt,j) is non-
decreasing. As in Lemma 5.1, we resolve ties
by arranging the vertices in a non-decreasing lex-
icographic order of (δt(v, w), δt+1(v, w)). This en-
sures that if a decremental update at time t + 1
causes δt(v, wt,j) < δt+1(v, wt,j) then it also causes
δt(v, wt,j) < δt+1(v, wt+1,j). However, this is not true
of incremental updates, so we must do more work
than in Lemma 5.1.

Let I1 = { (t, j) | δt(v, wt,j) < δt+1(v, wt,j)}
and let I2 = { (t, j) | δt+1(v, wt,j) < δt(v, wt,j)}. No-
tice that I1 corresponds to δ(v, wt,j) increasing (as a
result of a deletion), and I2 corresponds to δ(v, wt,j)
decreasing (as a result of an insertion). The number
of times the edges of v are scanned (as a result of a
change in δ(v, w), where w is a cluster center), in all
trees rooted at vertices of Ai, is at most:∑

(t,j)∈I1
1Ct(wt,j)(v) +

∑
(t,j)∈I2

1Ct+1(wt,j)(v),

where 1S is the indicator function for the set S, that
is, 1S(x) = 1 if x ∈ S and 1S(x) = 0 if x /∈ S.
We start with the second sum, which corresponds
to edge insertions. From Theorem 3.3 (property 4)
we know that the number of edge insertions is at

most Õ(αβn). Also, at any given time, v is (w.h.p)

in at most Õ(n1/k) clusters (Lemma 2.1), so even if
after every edge insertion v gets closer to every wt,j ,

we have
∑

(t,j)∈I2 1Ct+1(wt,j)(v) ≤ Õ((αβn)(n1/k)) =

Õ(αβn1+1/k), as required.
We now bound the first sum. Fix an index j

and let t1, . . . , t` be the times in which an incremen-
tal update took place and the distance between v and
the jth closest vertex in Ai decreased right after it.
Let t0 be the time before the first update and let
t`+1 be the time after the last update. Notice that
for every 1 ≤ r ≤ ` it holds that δtr−1(v, wtr−1,j) ≥
δtr (v, wtr,j), and that for every other time t (t 6= tr

for any r), we have δt−1(v, wt−1,j) ≤ δt(v, wt,j).
Let ∆(v, j) be the total amount of distance

changes between v and the jth closest vertex from
Ai. Since I1 corresponds to decremental updates,
the tie breaking property of Lemma 5.1 must
hold (δt(v, wt,j) < δt+1(v, wt,j) implies δt(v, wt,j) <
δt+1(v, wt+1,j)); thus, just as in Lemma 5.1, ∆(v, j)
is an upper bound on the number of pairs in I1 of
the form (·, j). Let ∆INC(v, j) (resp. ∆DEC(v, j) )
be the total distance changes caused by incremental
(resp. decremental) updates. From the definition of
t1, . . . , t` it follows that:

∆INC(v, j) =
∑̀
r=1

(δtr−1(v, wtr−1,j)− δtr (v, wtr,j))

∆DEC(v, j) ≤
∑̀
r=0

(δtr+1−1(v, wtr+1−1,j)− δtr (v, wtr,j))

Using a simple manipulation of the second summa-
tion we get that:

∆DEC(v, j) ≤

δt`+1−1(v, wt`+1−1,j)− δt0(v, wt0,j) + ∆INC(v, j)

We can now bound ∆(v, j) as follows:

∆(v, j) = ∆INC(v, j) + ∆DEC(v, j) ≤

δt`+1−1(v, wt`+1−1,j)− δt0(v, wt0,j) + 2∆INC(v, j)

By Theorem 3.3, δtr−1(v, wtr−1,j) − δtr (v, wtr,j) ≤
O(β) for every 1 ≤ r ≤ ` (property 5), and the

number of incremental updates is Õ(αβn) (property

6). Thus, ∆INC(v, j) ≤ Õ(αβ2n), so

∆(v, j) ≤ Õ(αβ2n) + δt`+1−1(v, wt`+1−1,j) ≤

Õ(αβ2n) + n = Õ(αβ2n)

Notice that by Lemma 2.1, (w.h.p) for every time t we
have that 1Ct(wt,j)(v) = 0 for every j > Θ(n1/k log n).

Thus,
∑

(t,j)∈I1 1Ct(wt,j) ≤
∑j=Θ(n1/k logn)
j=1 ∆(v, j) ≤

Õ(αβ2n1+1/k).

Corollary 5.1. The total time needed in order to
maintain all the clusters (and hence also all the
witnesses) while the graph G undergoes a sequence of

edge deletions is Õ(n2+1/kα2β3). This stems trivially
from Lemma 4.2 and the two lemmas above.

6 Future Work

We believe that our general framework can lead to
further improvements. Firstly, it can potentially be
applied to decremental SSSP in directed graphs, be-
cause although no sparse emulator of a directed graph
can preserve all shortest distances, there do exist em-
ulators that preserve long distances, which were our
main obstacle in the first place. Secondly, the key
to both our algorithms was an emulator which pre-
serves the following property of a purely decremental
setting: the shortest distance between two vertices
can only change around n times. However, it fails to
preserve the more general property that for any d,
the shortest distance between two vertices can only
change around d times before this distance exceeds
d. Developing a spanner with this property would
not only be helpful for small-diameter graphs, but it
would also lead to improved decremental algorithms
for general graphs.
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