
Near Linear Time (1 + ε)-Approximation for Restricted Shortest Paths in
Undirected Graphs

Aaron Bernstein∗

September 29, 2011

Abstract
We present a significantly faster algorithm for the re-
stricted shortest path problem, in which we are given two
vertices s, t, and the goal is to find the shortest path that
is subject to a side constraint. More formally, rather than
just having a single weight, each edge has two weights: a
cost-weight, and a delay-weight. We are given a thresh-
old T which corresponds to the maximum delay we can
afford, and the goal is to find the s−t path that minimizes
total cost while still having delay-length at most T.

There are many applications for this problem, as
it can model situations where we need a path that has
to achieve some balanced trade off between two differ-
ent parameters. The exact version of the problem is
known to be NP-hard [3], but there has been a series
of results on (1 + ε) approximations, which culminated

in a Õ(mn) algorithm for general graphs in 1999 [4, 8].
We present the first result to break though this barrier,
achieving a close to linear running time – technically it

is Õ(m(2
ε
)O(
√
log(n) log log(n))). It does have several draw-

backs, however. It is randomized (Las Vegas), it only
works for undirected graphs, and it approximates both
parameters (previous algorithms found a (1 + ε) shortest
path with delay exactly T or less, or a shortest path with
delay at most (1 + ε)T , whereas our algorithm incurs a
(1+ε) approximation on both counts.) Our result presents
an entirely new approach to the problem, which could po-
tentially be generalized to work for directed graphs and
to approximate only one of the parameters.

1 Introduction

A classical problem in graph algorithms is to find
the shortest path between two vertices s, t. But in
some situations, not all shortest paths are feasible, as
there are other side constraints to take into account.
The restricted shortest path problem (also known as
the bicriteria or constrained shortest path problem)
models this situation by introducing edges that have
not just one weight (e.g. cost), but two weights: a
cost-weight and and a delay-weight. Given a delay
threshold T, the goal is to find an s − t path that
minimizes the cost-length while having a delay-length
of at most T (the cost/delay length of a path is the
sum of the cost/delay weights of its edges).

This problem is applicable to scenarios in
which we need a path to achieve some trade-off

∗Columbia University, New York, NY, 10027. email: bern-
stei@gmail.com. Supported by the NSF GRFP Fellowship.

between two parameters. In particular, it is often
used in QoS (quality of service) routing, where the
goal is to route a package along the cheapest possible
path while also satisfying some quality constraint for
the user. For example, we might impose a limit on
the total delay of the path (i.e how long it takes), or
on the amount of packet loss. (See e.g. [7])

1.1 Previous Results There exist many practical
algorithms for this problem and its variations (see
[5, 13] for a small sample), but theoretically speaking
the restricted shortest path problem (RSP) is known
to be NP-hard in the exact case [3]. There does,
however, exist a series of approximation results [4,
6, 8, 12] for this problem which culminated in two
state of the art algorithms. The first, by Lorenz and

Raz [8], runs in Õ(mn/ε) time 1 and returns an s− t
path with delay-length at most T (the threshold is
preserved exactly), and cost-length at most (1 + ε)
larger than the optimum. Goel et al. [4] present
a result that runs in O(mn/ε) time and returns a
path with cost-length no longer than the optimum,
but with delay-length up to (1 + ε)T . It also has
the added advantage that in O(mn) time it computes
the shortest restricted paths from s to every possible
destination t.

1.2 Our Contributions Our algorithm is the
first to go beyond this barrier, achieving a
close to linear update time. Technically, it is

O(m(2
ε)O(
√
log(n) log log(n))) which is o(mnδ) for any

fixed δ (assuming constant ε). Our algorithm does
have several drawbacks, however: it is randomized
(Las Vegas), it only works for undirected graphs, and
it incurs a (1 + ε) approximation in both parameters.
That is, it returns a path with delay length at most
(1+ ε)T and cost length within (1+ ε) of the shortest
path with threshold T .

Like the result of Goel et al., our algo-
rithm computes approximate shortest distances (with
threshold (1 + ε)T) from source s to all destinations
t ∈ V , and can return any particular s − t path in

1we say that f(n) = Õ(g(n)) if f(n) = O(g(n)polylog(n))

189 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

O(L) time, where L is the number of edges on the
path. We achieve our improved running time by pre-
senting an entirely new approach to the restricted
shortest path problem (see Section 3). It is quite pos-
sible that this approach could be further extended to
work for directed graphs, or to only incur a (1 + ε)
approximation in one of the parameters.

1.3 Related Work The natural generalization
of the restricted shortest path (RSP) problem is
known as the multi-constrained shortest path prob-
lem, where instead of having a single side constraint
(the delay threshold T), we have many different
side constraints, each with their own corresponding
weight parameter and threshold. There is a large lit-
erature on this problem; see e.g. [9, 14].

Another generalization: in classical RSP, the
user fixes a specific delay threshold T, and we com-
pute the optimum path satisfying that threshold. But
what if there are many users, each with their own de-
sired cost-delay trade off, and hence their own thresh-
old? In this case, rather than looking for a single
path, we are looking for a small collection of paths
that approximately represents all the different trade
offs one could achieve. This is known as computing
the approximate Pareto curve. There have been sev-
eral results on this problem, with the state of the art
being a recent algorithm by Diakonikolas and Yan-
nakakis [2]. Their algorithm requires a classical RSP
algorithm (which takes a fixed threshold T) as a sub-
routine, so our improved algorithm yields faster run-
ning times for constructing the Pareto curve in undi-
rected graphs.

2 Notation

We start with an undirected graph G = (V,E)
with m edges and n vertices. Each edge on the
graph has two non-negative weights: a cost-weight
and a delay-weight. We let wc(u, v) denote the
cost-weight of an edge (u, v), and wd(u, v) denote the
delay weight. Given a path P , we let c(P) denote
the cost-length of this path (the sum of the edge
cost-weights), and d(P) denote the delay-length.

For any vertices x, y, we define the shortest
T -path between x and y to be the path that has
minimum cost-length among all x − y paths with
delay-length at most T , and we define the shortest
T -distance between x and y to be cost-length of
this path. We let PTx,y denote this shortest T -path,

cT (x, y) denote its cost-length, and dT (x, y) denote
its delay-length. Note that dT (x, y) is at most T ,
but it may be smaller.

Given some x − y path P , we say that an
x − y path P ∗ is a α, β approximation to P if
c(P ∗) ≤ αc(P) and d(P ∗) ≤ βd(P). We say that

P ∗x,y is a α, β-shortest T -path if c(P ∗x,y) ≤ αcT (x, y)
and d(P ∗x,y) ≤ βT

In the restricted shortest paths (RSP) prob-
lem, we are given a source s and a delay-threshold
T , and our goal is to compute, for every destination
t, the cost and delay length of some (1 + ε), (1 + ε)-
shortest T -path from s to t. We can also return
the actual path, but for simplicity, we only focus on
distances. (Note that we will sometimes end up with
approximations like (1 + ε)2, or (1 + 4ε), but these
are equivalent to (1 + ε),as we can just use a smaller
ε – e.g ε′ = ε/4.)

Much of our algorithm will avoid looking di-
rectly at the original graph G, and will instead
work with an emulator H, which is a graph on the
same vertices (but with different edges) that has a
similar distance structure to G but is easier to work
with. The use of emulators is extremely common in
approximate graph algorithms, but unlike the vast
majority of papers, we do not use them in order
to sparsify the original graph, but rather to create
shortest paths with only a small number of edges.

Definition 2.1. Given some threshold T ′, we say
that a graph H has a T’-approximate hop diameter of
h, denoted T’-AHD, if given any two vertices x, y and
any threshold T ∗ < T ′ there exists a (1 + ε), (1 + ε)-
shortest T ∗-path from x to y that has at most h edges
(the weight of these edges is not relevant). When the
threshold T ′ we are working with is clear in context,
as is usually the case, we simply write AHD instead
of T ′-AHD

Note that in the above definition, we are requiring
there to be few-edge approximations for all pairs x, y
and all possible thresholds T ∗ < T ′, not just T ′-
paths. We only consider thresholds T ∗ < T ′ because
when working with a threshold T ′, we do not care
about paths of larger threshold.

3 General Approach

In this section, we outline our general approach, and
highlight the new steps we take in order to go beyond

the Õ(mn) barrier. The structure of all RSP algo-
rithms, including ours, relies on the following “naive”
approach
Naive Algorithm: Let s be our source, let T be
our threshold, and let D = maxt∈V {cT (s, t)} – i.e, D
is the largest relevant cost-length. Assuming integer
weights, we can compute exact shortest T -distances
from s to every destination t in min{O(mD), O(mT)}
time. For details, see Section 2 of [6].

Thus, we already have an algorithm that works
well for small weights. In fact, it is instructive to con-
sider what we call half-unweighted graphs, where the

190 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

delay-weights are still arbitrary, but cost-weights are
all 1 (or vice versa). On such graphs, D ≤ n, so
the naive algorithm runs in O(mn) time. In general
graphs with large weights, however, D and T might
be very large.

All previous algorithms used rounding and
scaling to adapt the naive O(mD)/O(mT) algorithm
to work for large weights. There was quite a bit of
work to do – introducing a way to scale the naive
algorithm, picking the right rounding/scaling factor,
etc. – but everything they did fit into this same basic
framework. On the plus side, this meant that their al-
gorithms were clean and technically simple. But this
also introduced a fundamental limitation: the best
one can hope for by scaling large weights is reducing
the general case to the half-unweighted case, and in
fact, on a half-unweighted graph all these algorithms
essentially reduce to the naive one. But even in this
case the naive algorithm takes O(mn) time, so if we
want to go beyond this, we need to introduce an en-
tirely new approach.

At its core, our result consists of a faster
approach to the half-unweighted case (the hard
part), which we have generalized to arbitrary weights
through rounding and scaling (the easy part).

3.1 The Two Main Theorems On a conceptual
level, our algorithm uses the framework we developed
in an earlier paper to solve the seemingly unrelated
problem of dynamic shortest paths [1]. This frame-
work allows us to transform an efficient algorithm for
very small distances (the O(mT) algorithm) into an
algorithm for general graphs. In particular, we do the
following:

1. Find an algorithm that works well when dis-
tances are extremely small (O(mT) is indeed
efficient when T is very small. Note that it is
not enough for all delay-weights to be 1, as this
would yield T = n. We need not just delay-
weights but delay-distances to be small.)

2. Construct an emulator H that models distances
in the original graph G, but has small T -
approximate hop diameter, where T is the orig-
inal threshold (see Definition 2.1).

3. Use a simple weight-scaling technique to turn
the graph H with small hop lengths into a graph
H’ with small weighted distances (not just small
edge weights, but small distances).

4. Run the algorithm for small distances on H’

We formalize this approach with the following two
theorems, which we prove later.

Theorem 3.1. (step 3) Say that we are given a
graph G, a source s, and a threshold T, and let h be
the T -AHD of G. Then, in O(m) time, we can create
a new graph G’ with the following properties.
1. The edges of G’ are identical to those of G, except
with different delay-weights. For one, the delay-
weights in G′ are natural numbers.
2. Given any two vertices x, y, and Setting T ′ =
(1+2ε)h/ε ≤ 3h/ε = O(h), the shortest T’-path from
x to y in G’ is a ((1+ε), (1+ε))-approximate shortest
T-path from x to y in G.

Theorem 3.2. (step 2) Given a graph G,
we can create an emulator H with exactly
the same restricted distances, but with AHD

Õ((2
ε)O(
√
log(n) log log(n))). The time to construct H is

Õ(m(2
ε)O(
√
log(n) log log(n))), and the number of edges

is Õ(m+ n(2
ε)O(
√
log(n) log log(n)))

Corollary 3.1. (steps 1, 4) Given a graph G,
a source s, and a threshold T, we can compute
((1 + ε), (1 + ε)) T-shortest paths from s in time

Õ(m(2
ε)O(
√
log(n) log log(n)))

Proof. (of corollary) First we construct an emula-
tor H with small AHD using Theorem 3.2, and
then modify its edge weights to yield a new graph
H ′ with the properties described in Theorem 3.1.
But note that because H has small AHD, we

have T ′ = 2h/ε = Õ((2
ε)O(
√
log(n) log log(n))), which

means we can use the naive O(mT ′) algorithm to
compute T ′-shortest paths from s in H ′ in time

Õ(m(2
ε)O(
√
log(n) log log(n))). By property 2 of Theo-

rem 3.1, these paths in H ′ are ((1+ε), (1+ε))-shortest
T-paths in H, which has the same distances as G, so
these paths are in fact ((1+ε), (1+ε)) approximations
of the shortest T -paths from s in G.

Note that on its own, Theorem 3.1 yields a
O(mh) = O(mn) algorithm, where h is the T -AHD
of the original graph G; first we create a graph G′

with T ′ = (1 + 2ε)h/ε = O(h), and then we run the
O(mT ′) algorithm. This is exactly the result of [4],
and in fact the proof we use is conceptually similar,
except that instead of incorporating the scaling into
the naive O(mT) algorithm, we scale the graph
itself. The scaling we do is straight-forward; all the
difficulties come from Theorem 3.2 (step 2). It is
this theorem that allows us to overcome the O(mn)
barrier, because instead of just scaling large weights,
we change the underlying structure of the graph by
reducing the AHD.

Remark: The framework presented above (re-
ducing AHD, then scaling) comes from our earlier

191 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

FOCS 2009 result [1] on dynamic shortest paths.
But this is only a conceptual framework, and the
actual implementation differs enormously depending
on the specific problem at hand.

In our FOCS 2009 result, the main difficulties
lay in making sure that things work out in a dynamic
setting, where everything is constantly changing.
However, we could afford to be sloppy with how we
actually built the emulator. In both the current
paper and in our earlier FOCS 2009 paper, the al-
gorithm has two time-consuming steps: constructing
the emulator (step 2 above), and actually computing
the desired paths in this emulator (step 4 above). In
our FOCS 2009 paper, the bottleneck was step 4, so
we had plenty of time for the emulator construction.
But in this problem step 2 is the bottleneck, so
not only do we have less time to construct the
emulator, but our emulator has to preserve not just
shortest, but restricted shortest paths. Thus, to
keep the algorithm efficient, we need to construct a
more complex emulator in less time, which forces us
develop a more inventive construction than in the
FOCS 2009 paper.

4 Proof of Theorem 3.1

We now prove Theorem 3.1 from the previous section.
All we do is round and scale the delay-weights of the
edges.

Proof. Recall that T is the threshold, and h is the
AHD (see Definition 2.1) of the graph G we are
currently working with (possibly not the original
graph). We want to somehow scale down all the delay
weights while ensuring that the resulting weights are
integral. To do this:

1. Round all edge delay-weights up to the nearest
integer multiple of εT/h, and denote the result-
ing graph G∗. That is, if an edge had cost-weight
x, delay-weight y in G, then we round up y (but
not x) to get the corresponding weight in G∗.
For G∗ we will use the threshold T ∗ = (1+2ε)T ,
which is where the approximation error arises.

2. Divide all edge delay-weights in G∗ by εT/h, and
denote the resulting graph G′. Note that all
edge weights in G′ are integral. Define T ′ to
be (1 + 2ε)T/(εT/h) = (1 + 2ε)h/ε = O(h) – to
get the new threshold T’ we just scale the old
threshold T ∗ down by our scaling factor.

(Note that this rounding and scaling always results
in a graph G′ with natural weights, regardless of
whether the original graph had natural weights.)

The second step only involves scaling down
by a multiplicative factor, and so does not change
the structure of the graph at all. Thus, it is clear

that a T ′-shortest path in G′ is a T ∗-shortest path
in G∗ (T ′ is just T ∗ scaled down). Creating G∗

from G, however, introduces an additive factor of
up to εT/h on each edge, which does change the
structure. We need to show that this only introduces
a (1+2ε) approximation. More formally, let P be the
shortest T -path from x to y in G, and let P ∗ be the
shortest T ∗-path from x to y in G∗ (T ∗ = (1 + 2ε)T).
Note that since G and G∗ have the same edges (with
different weights), P∗ can also be viewed as a path
in G. To complete the proof, we need to show
P ∗ is a ((1 + ε), (1 + 2ε)) approximation to P –
that is, we should have c(P ∗) ≤ (1 + ε)c(P), and
d(P ∗) ≤ (1 + 2ε)T .

By definition, since P ∗ is a T ∗-path we have
d(P ∗) ≤ T ∗ = (1 + 2ε)T . To prove that c(P ∗) ≤
(1 + ε)c(P), recall that since G has AHD h, there
must be some ((1 + ε), (1 + ε)) shortest T -path Q
from x to y in G, such that Q has at most h edges.
That is, c(Q) ≤ (1 + ε)c(P) and d(Q) ≤ (1 + ε)T .
Now, let Q∗ be the path Q when viewed in G∗ –
same edges, but with slightly different weights. The
cost-weights are the same in G and G∗ so we still
have c(Q∗) = c(Q) ≤ (1 + ε)c(P). As for delays, the
delay-weight of each edge on Q went by at most εT/h,
so since Q has at most h edges, the total additive
error is at most εT . Thus, d(Q∗) ≤ d(Q) + εT ≤
(1 + ε)d(P) + εT ≤ (1 + 2ε)T = T ∗. Thus, we know
there exists a T ∗-path in G∗ with cost length at most
(1 + ε)c(P), so P ∗, being the shortest T ∗-path, will
also have cost at most (1 + ε)c(P).

Thus, we have shown that at the cost of a (1+ε), (1+
2ε) approximation we can work in G∗ instead of G.
We can make this a (1 + ε), (1 + ε) approximation by
just using ε′ = ε/2 instead of ε. The whole point of
this is that G∗ is much easier to work with because
we can scale it down to G′, which has a smaller
threshold T ′ = (1 + 2ε)h/ε ≤ 3h/ε = O(h) (see step
2 above). If h is small, then this will allow the naive
O(mT ′) = O(mh) algorithm to run very quickly on
G′.

5 Reducing The Hop Diameter.

We now turn to proving Theorem 3.2, in which we
must construct an emulator H of G that has small
AHD. The basic idea is that since hop diameter refers
only the number of edges, without regard to their
weight, we can reduce it by adding “shortcut” edges
to the graph. For example, if a path from x to y
uses 1, 000 edges and has cost-length c, delay-length
d, then we can shortcut this path by adding a single
edge from x to y of cost-weight c, delay-weight d.

There are two main obstacles to this approach.
The first is that it is unclear which paths we should
even try to shortcut. We cannot simply shortcut the

192 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

“shortest” paths, because we have a trade-off between
cost and delay. Do we shortcut the path from x to
y with high cost but low delay, or the one with high
delay but low cost? Note that we know our overall
delay from s should be around T, but this does not tell
us anything about what delay we should aim for on
some x− y subpath. Our solution will be to shortcut
many different paths from x to y in order to capture
all of the trade offs we might want.

The much more significant obstacle is that in
order to shortcut the path from x to y, we need
to compute the restricted shortest path from x to
y – even if we knew to aim for delay d, we would
need to find the shortest d-path. But this whole
paper is about how to compute the restricted shortest
path, so we seem to have a circular algorithm. We
overcome this by observing that although computing
restricted shortest paths is hard in general, it is easy
when the path from x to y has small delay – we
can just use the O(mT) algorithm. Our approach
is thus to first compute some of the easy paths, then
use this information to create shortcut edges, which
in turn reduce the hop diameter and allow us to
compute slightly less easy paths, which yield even
more shortcuts edges, and so on. We never get to
the point of computing all pairs restricted shortest
paths, but we do end up computing enough shortcut
edges to drastically reduce the AHD.

Our general outline (Section 3) suggested that
our algorithm is broken up into two discrete parts:
first we reduce the AHD, then we scale the weights
down. But in fact, the two steps are intermingled,
where first we scale down, then reduce the AHD a
bit, then scale down a bit more, then reduce the AHD,
and so on. We now formalize what we need from a
single such iteration.

Definition 5.1. Let α = (2
ε)O(
√
log(n)).

Lemma 5.1. Say that we are given a graph Gi =
(V,Ei) (likely not the original graph) with threshold
Ti and positive integer delay-weights. We can con-
struct an emulator Hi on the same vertex set with
the following properties

1. Hi contains all the edges of Gi plus some short-
cut edges, and all restricted distances in Hi are
identical to those of Gi (shortcut edges do not
change the distance structure).

2. Hi has Ti-AHD hi ≤ max{α, εTi/6} (see Defini-
tion 2.1 for Ti-AHD)

3. Hi has |Ei|+ Õ(nα) edges

4. Hi can be constructed in Õ(|Ei|α) time.

We leave the proof for later, and first observe the
following:

Corollary 5.1. Assuming this lemma we can con-
struct the small AHD emulator H of Theorem 3.2

Proof. (of corollary) All graphs have hop-diameter
≤ n, so our first step is to use Theorem 3.1 to
scale G down to a new graph G1 with threshold
T1 = O(n). By Theorem 3.1, we can now focus
on computing shortest T1-paths in G1, as these will
be ((1 + ε), (1 + ε)) shortest T -paths in G. Note
that by Theorem 3.1 the delay-weights in G1 are
natural numbers, and they remain so throughout our
algorithm.

We now use Lemma 5.1 to construct a new
graph H1 with the four properties listed above. In
particular, H1 has AHD h1 ≤ max{α, εT1/6}: if we
ever get down to an AHD of α then we are done (our
main goal is to obtain a small AHD), so we assume
that h1 ≤ εT1/6. But this means that we can use
Theorem 3.1 to scale H1 down to a new graph G2

with threshold T2 ≤ 3h1/ε ≤ (3εT1/6)/ε = T1/2. We
can now focus on computing shortest T2-paths in G2

because they will be (1 + ε), (1 + ε) shortest T1 paths
in H1, which be know by property 1 of Lemma 5.1
has the same distance structure as G1.

Thus, we have reduced the problem of working
in graph G1 with threshold T1, to that of working
in G2 with threshold T2 ≤ T1/2. We continue in
this fashion, cutting the threshold in half at every
step. The next step is to use Lemma 5.1 to create
a graph H2 with AHD h2 ≤ εT2/6, and then use
Theorem 3.1 to create a graph G3 with threshold
T3 = 3h2/ε ≤ T2/2.

We keep reducing the threshold and AHD in
this fashion, until withing O(log(n)) iterations we
reach a graph Hk with hk ≤ α. Hk serves as the
desired small AHD emulator H in Theorem 3.2. All
we have left is to analyze the construction time,
number of edges, and approximation error required
by this theorem. By property 3 of Lemma 5.1 each

iteration adds Õ(nα) edges, so after O(log(n)) such

iterations, the resulting graph Hk has Õ(m + nα)
edges, as desired. By property 4 of lemma 5.1, the

construction time in each iteration is Õ(|Ei|α), but

since the number of edges is always Õ(m + nα),

the time of an iteration never exceeds Õ(mα +

nα2) = Õ(m(2
ε)O(
√
log(n))), yielding a total time of

Õ(m(2
ε)O(
√
log(n))) over all iterations.

As for approximation, we incur a (1 + ε) error
every time we use Theorem 3.1, so since we have
log(n) iterations the total error is (1 + ε)log(n). To
reduce this, we use ε′ = ε/4 log(n), which yields
(1+ε′)log(n) = (1+ε/4 log(n))log(n) ≤ (1+ε). This is

193 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

the only place where we had to reduce ε by more than a
constant, and this results in the extra log log(n) factor
in the exponent of our overall running time.

We have shown how to use Lemma 5.1 to construct
the small emulator H of Theorem 3.2 with AHD
h = O((2

ε)O(
√
log(n) log log(n))). Recall that once we

have this the problem is easy because we can just use
Theorem 3.1 one last time to get a graph H’ with

threshold T ′ = O(h) = O((2
ε)O(
√
log(n) log log(n))) and

then use the naive O(mT ′) algorithm. We now turn
to the final step: proving Lemma 5.1.

6 Proof of Lemma 5.1

6.1 Clustering Our proof for Lemma 5.1 is partly
based on sampling and clustering techniques of Tho-
rup and Zwick [10], as well as on the emulator they
construct with these techniques [11]. But although
this serves as our foundation, we end up using these
techniques for a seemingly unrelated problem, and we
introduce many new techniques and ideas. Firstly, we
have to generalize everything to work for restricted
shortest paths, which introduces several new difficul-
ties as these are much harder to work with. Secondly,
we use these techniques to a very different end: where
the Thorup and Zwick paper focused on constructing
sparse emulators, our focus is on reducing the hop di-
ameter, which requires an entirely different analysis.

The basic idea of Thorup and Zwick is to let
different vertices have different priorities, where high
priority vertices are rarer but also better connected.

Definition 6.1. Let V = A0 ⊇ A1 ⊇ ... ⊇ Ar−1 ⊇
Ar = ∅ be sets of vertices (r = O(log(n)) is a pa-
rameter of our choosing). We say that a vertex has
priority i, or is an i-vertex if it is in Ai/Ai+1. We

define cB(v,Ai) to be the shortest B-distance from v
to some i-vertex: cB(v,Ai) = minw∈Ai/Ai+1

cB(v, w).

(See Section 2 for cB(v, w)). We define the
iB-witness of v to be corresponding i-vertex: the iB

witness of v is argminw∈Ai/Ai+1
cB(v, w) (if there is

a tie between several w, pick an arbitrary one to be
the iB witness).

Definition 6.2. We define the B-cluster of an i-
vertex v, denoted CB(v), to contain all vertices w
for which the B-distance from w to v is smaller than
the B-distance from w to its nearest i + 1 vertex:
CB(v) = {w | cB(w, v) < cB(w,Ai+1)}. We define
the edges of this cluster to be all edges with at least
one endpoint in CB(v). We define |CB(v)| to be the
number of vertices in this cluster, and E[CB(v)] to
be the number of edges.

We use the same sets Ai as Thorup and Zwick [10]:
we start with A0 = V , and every vertex in Ai

is independently sampled and put into Ai+1 with
probability 1/n1/r. This leads to:

Lemma 6.1. Given any vertex w, and any threshold
B, we have that with high probability w is only

contained in Õ(rn1/r) = Õ(n1/r) B-clusters (r =

O(log(n)) is subsumed into the Õ notation).

Proof. Let us first fix some priority i, and look at
the number of clusters CB(v), for i-vertices v, that
contain w. To do this, let v1, v2, ..., vk be the list
of vertices in Ai (i.e priority i or higher) sorted by
increasing B-distance from w. Because of how we
sampled our vertices, each of these vertices has a
1/n1/r chance of being in Ai+1. Thus, by a simple
application of the Chernoff bound, we have that with

high probability, one of the first Õ(n1/r) vertices in
this list is in Ai+1. But by definition of clusters, this
means that w is not in the cluster CB(vj) for any vj
that is further from w – i.e comes after this vertex
from Ai+1 in our list. Thus, with high probability w

is in the cluster of only Õ(n1/r) i-vertices. There
are r different priorities, so since the above holds
for each of them, we have that in total w is in

Õ(rn1/r) = Õ(n1/r) clusters (with high probability).

Remark 6.1. This claim is true with high probability
for any vertex w and any threshold B, so by the union
bound it is true with high probability for all vertices w
and thresholds B < n. Thus, we will assume for the
rest of the paper that the above lemma always holds.

Corollary 6.1. For any particular B, the total size

of all B-clusters is Õ(n1+1/r), and the total number of

edges in all B-clusters is Õ(mn1/r). Thus, the overall
number of vertices, totaled among all B-clusters for

B = 1, 2, ..., β is Õ(βn1+1/r), and the overall number

of edges is Õ(βmn1/r) (β is an upper bound of our
choosing).

Proof. Each vertex is in Õ(n1/r) B-clusters, so
the total size of all B-clusters is clearly n times
this. Similarly, the total number of edges is

Õ(n1/rΣv∈V degree(v)) = Õ(mn1/r).

6.2 Using The Clusters

Definition 6.3. Define

β =
√

log(n) · (7/ε)
√

log(n)+4

Let r =
√

log(n) and note that β and n1/r are both

Õ((2
ε)O(
√
log(n)))

We show in the next section how to compute the clus-
ters, but first we show how to use them to prove

194 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Lemma 5.1. Recall that we start with a graph Gi
with threshold Ti and want to construct an emulator

Hi that has AHD hi ≤ MAX{(2
ε)O(
√
log(n)), εTi/6}, in

addition to a few other properties.
Hi consists of all of the edges of Gi, plus some

new “shortcut” edges. In particular, for every vertex
v and every threshold B with 1 ≤ B ≤ β, we add an
edge from v to every vertex w in CB(v). The weight
of this edge is precisely the weight of the shortest B-
path from v to w. That is, if PB(v, w) has length
(cB(v, w), dB(v, w)), then we set edge (v, w) to have
weight (cB(v, w), dB(v, w)). Similarly, for every ver-
tex v, every priority i, and every threshold B < β we
add a shortcut edge from v to the iB witness of v (see
Definition 6.1 for iB-witness).

Our shortcut edges clearly never decrease dis-
tances, so property 1 of Lemma 5.1 holds. The total
number of shortcut edges added is just the total size
of all the clusters used, which by the second corollary

of Lemma 6.1 is Õ(βn1+1/r) = Õ(n(2
ε)O(
√
log(n)))

(the total number of iB-witnesses is even smaller –
only O(rβn)). We must now show that the clusters
can be computed efficiently, and that these shortcut
edges sufficiently reduce the AHD.

6.3 Computing The Clusters The clusters are
defined in terms of cB(v,Ai) (see Definition 6.1), so
first we compute that.

Lemma 6.2. Given a threshold B and a priority i, we
can compute cB(v,Ai), for all vertices v, in a total of
O(mB) time.

Proof. We create a slightly modified graph G′ by
adding a dummy source s′, and including an edge
of cost-weight 0 and delay-weight 0 from s′ to every
vertex in Ai. To get from s′ to v in G′ we must
go through one of the vertices in Ai, so the shortest
path from s′ to v will go through the vertex in Ai
that is closest to v. Thus, all we do is compute
shortest B-paths from s′: for every vertex v, the cost-
length of this path is precisely cB(v,Ai), and the first
vertex after s′ is the iB-witness of v. We can compute
these B-paths from s′ in O(mB) time using the naive
algorithm.

Corollary 6.2. For all priorities i and all thresh-
olds B with 1 ≤ B ≤ β we can compute all of the

cB(v,Ai) in a total of Õ(rβ2m) = Õ(m(2
ε)O(
√
log(n)))

time (see Definition 6.3 for r and β): we just sum the
O(mB) running time for all possible priorities i and
thresholds B.

Now, to compute the clusters CB(v) we rely on
the following lemma that allows us to build high-
threshold clusters from lower-threshold ones.

Lemma 6.3. Let v be some i-vertex, and let w be any
vertex in cluster CB(v). Let P be the shortest B-path
from from v to w, and δ be the delay-length of this
path (we know δ ≤ B). Let w′ be the vertex right
before w on P , let P ′ be the subpath of P from v to
w′, and let δ′ be the delay-length of this path. Lemma:
We must have that w′ is in Cδ

′
(v).

Proof. Recall from Section 2 that wc(w
′, w) denotes

the cost-weight of edge (w,w′), wd(w
′, w) denotes

the delay-weight, and c(P) denotes the cost-length of
path P . Since (w′, w) is the only difference between
paths P ′ and P we must have wc(w

′, w) = c(P) −
c(P ′) and wd(w

′, w) = δ − δ′
Now, Say for contradiction that w′ is not

in Cδ
′
(v). Then, by definition of clusters, there

must be some i + 1-vertex v′ such that cδ
′
(v′, w′) ≤

cδ
′
(v, w′). But then consider the v′ − w path that

follows the shortest δ′-path from v′ to w′, followed
by edge (w′, w) This path has cost-length cδ

′
(v′, w′)+

wc(w
′, w) ≤ cδ′(v, w′) + wc(w

′, w) = c(P) = cB(v, w)
and has delay-length≤ δ′+wd(w′, w) = δ ≤ B. Thus,
it is a B-path from v′ – an i + 1-vertex – to w with
cost-length ≤ cB(v, w), so w is not in CB(v), which
is a contradiction.

Definition 6.4. We say that we “compute dis-
tances” within a cluster CB(v) if we compute
cB(v, w) for every vertex w ∈ CB(v).

Lemma 6.4. Given any vertex v and an up-
per threshold β, we can compute clusters
C1(v), C2(v), ..., Cβ(v), and the distances within

them in a total of Õ(β
∑β
B=1E[CB(v)]) time.

Proof. Say that v is an i-vertex. The basic idea is to
increment the threshold by one at each step: first we
compute distances in C1(v), then use this to compute
distances in C2(v), then C3(v), all the way up to
Cβ(v).

Recall the notations wc(v, w) and wd(v, w)
from Section 2. Computing C1(v) is easy because
it can only contain v and its neighbors. We just look
at all edges leaving v, and we consider vertices w
for which wd(v, w) = 1 (to ensure we do not break
our delay threshold). We then add w to C1(v) if
wc(v, w) < c1(w,Ai+1), which we computed above:
v is an i-vertex, so this directly checks the cluster
property. Computing distances within the cluster is
also trivial as the cost-distance to a vertex w in C1(v)
is just wc(v, w)

Now, say that we have already computed
clusters C1(v), ..., Ck(v) and distances within them.
We show how to use this to compute Ck+1(v). For
every j with 1 ≤ j ≤ k we consider all edges (u,w)
where u is in Cj(v) (it is fine if w is also in Cj(v),

195 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

though it does not have to be). For every such edge
(u,w) we include w in Ck+1(v) if properties 1 and 2
below hold.

1. wd(u,w) ≤ k + 1− j.

2. cj(v, u) + wc(u,w) < ck+1(w,Ai+1) (i is the
priority of v).

What we do: If these properties hold, we include
w in Ck+1(v). We compute distances by setting
ck+1(v, w) = cj(v, u) +wc(u,w). However, if we also
end up including w in Ck+1 through some different
edge (u′, w) with u′ in some Cj

′
(v), then we naturally

take the minimum of the distances found.

The first requirement ensures that the v − w
path going through edge (u,w) does not break our
delay-threshold of k + 1: the path from v to u has
delay at most j (u is in Cj(v)), and edge (u,w) adds
at most k + 1 − j more delay. The second ensures
that w is closer to v than to the nearest i+ 1-vertex
(the cluster requirement). Thus, any vertex added
by our algorithm does in fact belong in Ck+1(v).

We now show that given any w in Ck+1(v),
our algorithm correctly puts w in the cluster, and
finds the shortest k + 1 distance from v to w. Let
P be the shortest k + 1-path from v to w, let w′ be
the vertex before w on P , and let P ′ be the subpath
of P from v to w′. Let δ be the delay-length of P
and let δ′ be the delay length of P ′. We clearly have
δ′ < δ ≤ k + 1. By lemma 6.3 w′ is in Cδ

′
(v), so

our algorithm will look at (w′, w) when it looks at

Cδ
′
(v); it is possible that it will also look at edge

(w′, w) in other clusters, e.g. if w′ is in Cδ
′−1(v),

but we want to focus on Cδ
′
(v) in particular.

We know that wd(w
′, w) = δ − δ′ ≤ k + 1 − δ′

so requirement 1 holds. Requirement 2 will
also hold because cδ

′
(v, w′) + wc(w

′, w) is pre-
cisely the cost-length of P , which is the shortest
k + 1-path from v to w. Thus, since we are
assuming that w is in Ck+1(v), by definition of

clusters we have that the cδ
′
(v, w′) + wc(w,w

′) =
ck+1(v, w) < ck+1(w,Ai+1). Similarly, when we set

ck+1(v, w) = cδ
′
(v, w′) + wc(w

′, w) (see ”What we
do” above) this gives us the cost-length of P , which
is in fact the shortest k + 1-distance from v to w

Computing any particular Ck+1(v)
requires us to look at every edge in
C1(v), C2(v), ..., Ck(v), yielding a running time

of O(
∑k
B=1E[CB(v)]) ≤ O(

∑β
B=1E[CB(v)]) (recall

that β =
√

log(n) · (7/ε)
√

log(n)+4 is the upper
bound on the cluster thresholds we look at). Thus,
the time to compute all of C1(v), ..., Cβ(v) is just

Õ(β
∑β
B=1E[CB(v)]), as desired.

Corollary 6.3. The total time to compute clus-
ters CB(v) and distances withing these clusters, for
all v ∈ V and all B such that 1 ≤ B ≤ β is

Õ(β2mn1/r) = Õ(m(2
ε)O(
√
log(n))).

Proof. The above lemma tells us the running time for
a single vertex. For all vertices it is

Õ(β
∑
v∈V

β∑
B=1

E[CB(v)]) = Õ(β

β∑
B=1

∑
v∈V

E[CB(v)])

≤by Lemma 6.1 Õ(β

β∑
B=1

mn1/r) = Õ(β2mn1/r)

6.4 Analyzing the approximate hop diam-
eter In Lemma 5.1 – the lemma we are proving
– we start with some graph G′ that has thresh-
old T ′. We constructed the desired emulator H ′

by keeping all the edges of G′ and also adding
shortcut edges from every vertex v to every vertex
w ∈ CB(v), and every iB-witness of v, for all

threshold B ≤
√

log(n) · (7/ε)
√

log(n)+4 – see Section
6.2 for details. We have already verified that H ′

satisfies properties 1,3, and 4 of Lemma 5.1, so all we
have left is to prove the following: The emulator H ′

described above has a T ′-approximate hop diameter

(T ′-AHD) of max{
√

log(n) · (7/ε)
√

log(n)+4, εT ′/6}
(see Definition 2.1 for T ′-AHD).

For the rest of this section, we let r =
√

log(n)
be the number of vertex priorities (see Definition

6.1), let β =
√

log(n) ·(7/ε)
√

log(n)+4 = (2
ε)O(
√
log(n))

be the upper limit on our cluster thresholds, and let
h′ = MAX{β, εT ′/6} be the AHD that we are shooting
for. Note that h′ = β signifies that the AHD is small
enough to terminate (see Corollary of Lemma 5.1),
so the real case to consider is h′ = εT ′/6 (we show
later exactly where the β comes in).

Let us focus on some arbitrary pair of vertices
x, y, and let P ′ be the shortest T ′-path between
them in G′. Note that since H ′ contains all the edges
of G′, P ′ is also the shortest T ′-path in H ′, but it
might have more than h′ edges. We want to prove
that H ′ contains a ((1 + ε), (1 + ε)) approximation
to P ′ – call it P ∗ – with at most h′ edges. Note that
we do not need an algorithm for actually finding this
path: We are only trying to prove that such a path
P ∗ exists. Our proof presents a constructive method
for finding this path, but it is not something the
computer ever runs

Our AHD analysis borrows from our earlier FOCS
2009 paper [1], but a lot of extra work is required to
extend it to restricted shortest paths. The proof is

196 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

quite involved, so we start with some intuition, and
then present the details.

Intuition: The idea of course is that P ∗ will
use some of the shortcut edges in H to go a long way
with just a few edges. We are only scaling the AHD
down by 6/ε, so the shortcut edges do not even have
to shortcut all that much. We start with x, and look
at clusters CB(x) for various different B. If one of
these clusters contains many vertices on P ′, then we
simply take a shortcut edge from x to some x′ far
down P ′: this guarantees a lot of progress with a
single edge.

But there is no guarantee that a cluster goes
far down P ′. If there is some higher priority vertex
w near P ′ then by definition of clusters, CB(x) will
not go far down P ′. But if there is a higher priority
vertex w nearby, we can get to it with just a few
shortcut edges. This might involve taking a detour,
as w is likely not on P ′ itself, but as long as w is
near the path, the detour will be small. We now
continue from w, and the point is that since it has
higher priority, clusters CB(w) will be larger, and
hence allow us to make more progress towards y.
So in short, we keep on taking steps towards y by
using our cluster shortcut edges. At each step we
have two cases. Either the cluster is large, in which
case we can make a lot of progress, or it is small, in
which case there is a high priority vertex nearby, so
we can get to it without incurring much of an error.
There are only r priorities, so we will not spend
more than O(r) edges climbing in priority; if we ever
get to priority r − 1 (the highest priority), we will
be guaranteed to make a whole lot of progress from
there.

Details: As mentioned in the intuition, each
shortcut edge will either climb a priority, or make
a lot of progress down P ′. Note that making a lot
of progress is important for two reasons. Firstly, it
ensures that we are using a small number of edges
to go a long way, thus keeping the AHD small. But
secondly, it makes up for the earlier detours that
we made: the detours incurred some small error,
but this error can be subsumed into a multiplicative
(1 + ε) approximation if we later make a lot of
progress.

The issue is that it is unclear how to define
progress because we have two weight-parameters:
does progress mean a shortcut edge with large delay
weight, or large cost weight? If we take an edge with
large delay weight, this will make up for previous
detours in terms of delay, but it might not make up
for them in terms of cost. To overcome this, we note
that there are three sorts of paths: ones that have
large cost relative to their delay (cost-heavy), ones
with large delay relative to their cost (delay-heavy),

and ones that are approximately balanced. The idea
is that when working with a cost-heavy path, we care
much more about getting a good approximation to
the cost: we don’t mind a bad delay approximation,
as the overall delay of the path is relatively small, so
even a 3-approximation to the delay would not lead
to much delay error. Similarly, when working with a
delay-heavy path, we focus on getting a good delay
approximation. When working with a balanced path,
a lot of cost-progress is also a lot of delay-progress,
so we need a good approximation on both counts.

As in the intuition, say that we are trying to
get from x to y, and let P ′ be the shortest T ′-path
between them. Recall that d(P ′) is the delay of this
path, and that c(P ′) is its cost. We are trying to find
a path P ∗ that approximates P ′ but has ≤ εT ′/6
edges.

Definition 6.5. For any very u on P ′, let P ′x,u be
the subpath of P ′ from x to u. Let c(u) be the cost of
this path, and let d(u) be the delay of this path.

Definition 6.6. Let ρ = c(P ′)/d(P ′) (ρ for ratio).
This will serve as a scaling factor between cost and
delay.

What we want: Starting from x, at each step we
want to take a path from x to some u that makes a
lot of progress with a small number of edges, and is
a good approximation to P ′x,u. We will then restart
the process from u,taking a good path to some u2
that takes us even closer to y. continuing in this
way, we will get a good path from x to y.

More formally, we want to find a path P ∗x,u,
from x to some u on P ′, such that P ∗x,u satisfies one
of the following three cases.

Case 1 (cost-heavy):

1. P ∗x,u contains ≤ 3r edges. (P ∗x,u does not contain
too many edges)

2. c(u) ≥ ρ(36r/ε) (going to u makes enough cost
progress towards y)

3. c(u) ≥ ρ(3/ε)d(u) (the subpath P ′x,u is cost-
heavy)

4. c(P ∗x,u) ≤ (1 + ε)c(P ′x,u) (P ∗x,u is a good cost-
approximation)

5. d(P ∗x,u) ≤ 3d(P ′x,u) (P ∗x,u is an OK delay-
approximation)

Case 2 (delay-heavy):

1. P ∗x,u contains ≤ 3r edges. (P ∗x,u does not contain
too many edges)

197 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

2. d(u) ≥ (36r/ε) (going to u makes enough delay
progress towards y)

3. d(u) ≥ (3/ε)c(u)/ρ (the subpath P ′x,u is delay-
heavy)

4. d(P ∗x,u) ≤ (1 + ε)d(P ′x,u) (P ∗x,u is a good delay-
approximation)

5. c(P ∗x,u) ≤ 3c(P ′x,u) (P ∗x,u is an OK cost-
approximation)

Case 3 (balanced approximation):

1. P ∗x,u contains ≤ 3r edges. (P ∗x,u does not contain
too many edges)

2. c(u) ≥ ρ(36r/ε) (going to u makes enough cost
progress towards y)

3. d(u) ≥ (36r/ε) (going to u makes enough delay
progress towards y)

4. c(P ∗x,u) ≤ (1 + ε)c(P ′x,u) (P ∗x,u is a good cost-
approximation)

5. d(P ∗x,u) ≤ (1 + ε)d(P ′x,u) (P ∗x,u is also a good
delay-approximation)

Why this is enough: Say that we had a method
such that starting from x, we were guaranteed to
find a vertex u on P ′, and a path P ∗x,u satisfying
one of the three cases above. We then restart the
process from u, and find a path P ∗u,u2

to some u2
further down P ′. We would continue in this fashion
until reaching y. We now want to show that this
would path be a (1 + ε), (1 + ε) approximation to P ′

(the shortest T ′-path from x to y), that has at most
εT ′/6 edges.

To see that the path contains at most
εT ′/6 edges, note that since the total cost of P ′

is c(P ′) = ρd(P ′) ≤ ρT ′, there can be at most
c(P ′)/(ρ(36r/ε)) ≤ εT ′/(36r) subpaths of cost-
length ρ(36r/ε). Thus, we can take a total of at most
εT ′/(36r) paths of cases 1 and 3. By an analogous
argument for delay, there can be a total of at most
εT ′/(36r) subpaths of cases 2 and 3. Thus, there are
at most εT ′/(18r) subpaths in total, and by property
1 of all the cases, each such subpath has at most 3r
edges, yielding at most εT ′/6 edges in total.

We now show that the path is a (1 + ε), (1 + ε)
approximation. Let us first focus on the cost
approximation. We know that the paths of case
1 and 3 yield (1 + ε) cost approximations, so the
total cost-error from paths of case 1 and 3 is at
most εc(P ′). But what about paths of case 2?
Recall that all these paths are approximations of
various P ′x,u – subpaths of P ′. The total delay of
all these subpaths of P ′ (the ones we approximate

with case 2) is clearly at most d(P ′), but since all
the subpaths are delay-heavy (property 3 of case
2), the total cost of all these subpaths is at most
d(P ′)/((3/ε)/ρ) = c(P ′)/(3/ε). Thus, since our case
2 paths all yield a 3-approximation to the cost (case
2, property 5), the total cost error from case 2 paths
is ≤ 3c(P ′)/(3/ε) = εc(P ′). Thus, the total error
from all these cases is at most 2εc(P ′), which yields
a (1 + 2ε) cost-approximation. Using ε′ = ε/2 yields
the desired (1 + ε) cost approximation.

The proof for a (1 + ε) delay approximation
is exactly symmetrical, so we omit it. The problem
case for delay is course case 1 instead of case 2.

How to find a suitable path P ∗x,u All we
have left is to show that there always exists a path
P ∗x,u that satisfies one of the three cases above. We
will prove its existence by constructing it.

Let w′1 be the furthest vertex on P ′ for

which w′1 is in cluster Cd(w
′
1)(x), and let w1 be

the vertex right after w′1 on P ′ (see Definition
6.5 for d(w′1)). Note that since w1 is not in
Cd(w1)(x), there must be some 1-vertex v1 such that
cd(w1)(w1, v1) ≤ cd(w1)(w1, x) (in particular, let v1
be the 1d(wi) witness of w1 – see Definition 6.1).
Now, let w′2 be the furthest vertex on P ′ that is

in Cd(w
′
2)(v1), and let w2 be the vertex right after

w′2 on P ′. Let v2 be the 2d(w2)-witness of w2; so
we have cd(w2)(w2, v2) ≤ cd(w2)(w2, v1). Let w′3 be

the furthest vertex on P ′ that is in Cd(w
′
3)(v2), and

define w3, and 3-vertex v3 analogously. Continue
in this fashion until we get up to w′r−1, wr−1, and
(r − 1)-vertex vr−1 (r − 1 is the largest possible
priority). Because of how we picked w1, we
have cd(w1)(w1, v1) ≤ cd(w1)(w1, x) = c(w1) (see
Definition 6.5 for c(w1)). We can prove by induction
that for all i we have

cd(wi)(wi, vi) ≤ c(wi)

We have already proved the base case of i = 1.
Now, we assume it is true for some i, and prove
it for i + 1. We know that cd(wi+1)(wi+1, vi+1) ≤
cd(wi+1)(wi+1, vi) because otherwise wi+1 would be
in Cd(wi+1)(vi), which contradicts how we picked
wi+1. Also, note that we can get from vi to wi+1

by going down to wi and then following P ′ from wi
to wi+1 ; the subpath of P ′ from wi to wi+1 has cost
c(wi+1)− c(wi). Thus, we must have that

cd(wi+1)(wi+1, vi+1) ≤ cd(wi+1)(wi+1, vi)

≤ c(wi+1)− c(wi) + cd(wi)(wi, vi)

≤by induction c(wi+1)− c(wi) + c(wi)

= c(wi+1)

(6.1)

198 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

(Technical note: we must also show that d(wi+1) is
enough delay to get from vi to wi+1, but this can
be shown via an identical induction argument, so we
omit it.) Now, note that we can always take the
following shortcut edges to any wi (see Figure 1)

(x,w′1) ◦ (w′1, w1) ◦ (w1, v1) ◦ (v1, w
′
2)

◦ (w′2, w2) ◦ (w2, v2) ◦ ... ◦ (w′i, wi)

All of these shortcut edges exist in our emulator: for
every edge (vi−1, w

′
i) we have that w′i is in the cluster

Cd(w
′
i)(vi−1); every edge (w′i, wi) is in the original

graph; and for every edge (wi, vi) we have that vi is
a id(wi)-witness of wi.

It is easy to see that this path is no longer
than the path that follows P ′ from x to wi, but takes
detours from w1 to v1 and back to w1, from w2 to v2
and back, and so on, the last detour being from wi−1
to vi−1 and back (note that a detour from some vj
to wj is up to twice the path-length from vj to wj
because it goes from vj to wj and then back). Thus,
we have a path from x to wi – which we call the
standard path to wi – of cost length at most

c(wi) + 2[cd(w1)(w1, v1) + cd(w2)(w2, v2)+

...+ cd(wi−1)(wi−1, vi−1)]

≤by Equation 6.1

c(wi) + 2[c(w1) + c(w2) + ...+ c(wi−1)]

(6.2)

Similarly, the delay of this path is at most

d(wi) + 2[d(w1) + d(w2) + ...+ d(wi−1)]

Thus, it is easy to see that this path is always a 3-
approximation to both cost and delay. In order to
get a good cost approximation we need c(wi) >>
2[c(w1)+c(w2)+...+c(wi−1)], and similarly for a good
delay approximation we need d(wi) >> 2[d(w1) +
d(w2) + ...+ d(wi−1)].

Definition 6.7. Define

B(i) = (7/ε2)i · (36r/ε)(3/ε)

Bρ(i) = ρ(7/ε2)i · (36r/ε)(3/ε) = ρB(i)

Note that B(0) = (36r/ε)(3/ε), Bρ(0) =
ρ(36r/ε)(3/ε), and that since the number of

priorities (r) is at most
√

log(n) we have B(r− 1) ≤
B(

√
log(n)− 1) <

√
log(n) · (7/ε)

√
log(n)+4, which is

precisely β – our upper bound on cluster thresholds.

It is not hard to check that the following holds: 2

B(i) ≥ (6/ε2)(B(0) +B(1) + ...+B(i− 1))

2this stems from the identity that for any n > 1, we have
that 1 + n+ n2 + ...+ ni−1 = (ni − 1)/(n− 1) < ni/(n− 1)

Bρ(i) ≥ (6/ε2)(Bρ(0) +Bρ(1) + ...+Bρ(i− 1))

Now, let j be the first index for which at least one of
the following properties holds (assume for now that
such an index j exists).

1. c(wj) ≥ Bρ(j − 1)

2. d(wj) ≥ B(j − 1)

Key: Note that since j is the first such index, for
every index j′ before j we have c(wj′) < Bρ(j

′ − 1)
and d(wj′) < B(j′ − 1). We have four cases to
consider.

Case 1 (cost-heavy): c(wj) ≥ Bρ(j − 1)
and c(wj) ≥ ρ(3/ε)d(wj)
We claim that in this case the path fits into Case
1 from the ”what we want” section above. We
now check each of the five properties. Prop-
erty 1 holds because our standard path to wj
uses 3 shortcut edges to climb from priority
i to i + 1 ((vi, w

′
i+1) ◦ (w′i+1, wi) ◦ (wi, vi+1)),

so since there are r priorities, it uses at most
3r edges. Property 2 holds because c(wj) ≥
Bρ(j − 1) ≥ Bρ(0) = ρ(36r/ε)(3/ε) > ρ(36r/ε).
Property 3 holds because of our assumption for this
case. Property 4 holds because the path we take
to wj has cost c(wj) + 2[c(w1) + ... + c(wj−1)] ≤
c(wj)+2[Bρ(0)+Bρ(1)+...Bρ(j−2)] ≤ c(wj)+εc(wj),
where the last inequality is true because c(wj) ≥
Bρ(j − 1) ≥ (6/ε2)(Bρ(0) + Bρ(1) + ...+Bρ(j − 2)).
Property 5 holds because as mentioned before,
our standard path to any wi is automatically at
least a 3-approximation in both cost and delay (at
the very worst, the detours are twice the path length).

Case 2 (delay-heavy): d(wj) ≥ B(j − 1)
and d(wj) ≥ (3/ε)c(wj)/ρ
In this case, the path fits into Case 2 from the ”what
we want” section. The proof is exactly analogous to
the proof for Case 1 above, so we omit it.

Case 3 (balanced): either c(wj) ≥ Bρ(j − 1)
or d(wj) ≥ B(j − 1) (or both) and
c(wj)/(3/ε) ≤ ρd(wj) ≤ c(wj)(3/ε)
In this case, we show that the path fits into Case 3
from the ”what we want” section above. Let us say,
without loss of generality, that c(wj) ≥ Bρ(j − 1)
(the case where d(wj) ≥ B(j − 1) is symmetrical).
We know that our standard path to wi contains ≤ 3r
edges, so Property 1 holds. Property 2 holds because
c(wj) ≥ Bρ(j − 1) ≥ Bρ(0) = ρ(36r/ε)(3/ε) >
ρ(36r/ε). Property 3 holds because we know from
the balance assumption for this case that

d(wj) ≥ c(wj)/(ρ(3/ε)) ≥ Bρ(0)/(ρ(3/ε)) = (36r/ε)

199 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Figure 1: This figure shows our standard path in H from x to wi that contains few edges. The dotted path
is P ′, the actual shortest path from x to wi , while the bold path is the one that we use. Each bold line
corresponds to a single shortcut edge.

Property 4 holds because c(wj) ≥ Bρ(j − 1) so the
path we take to wj has cost c(wj)+2[c(w1)+c(w2)+
...+c(wj−1)] ≤ c(wj)+2[Bρ(0)+Bρ(1)+...Bρ(j−2)] ≤
c(wj) + εc(wj). Finally, property 5 holds because

d(wj) ≥ c(wj)/(ρ(3/ε)) ≥ Bρ(j − 1)/(ρ(3/ε))

= B(j − 1)/(3/ε)

≥ (6/ε2)(B(0) +B(1) + ...+B(j − 2))/(3/ε)

≥ (2/ε)(B(0) +B(1) + ...+B(j − 2))

(6.3)

Thus, the path we take to wj has delay

d(wj) + 2[d(w1) + ...+ d(wj−1)]

≤ d(wj) + 2[B(0) +B(1) + ...+B(j − 2)]

≤ d(wj) + εd(wj)

Why index j exists: The three cases above assumed
the existence of an index j with c(wj) ≥ Bρ(j − 1)
or d(wj) ≥ B(j − 1). We now prove such an index
exists. Say, for contradiction, that we got to vr−1
without encountering such a j. Since there are no
r-vertices (r−1 is the highest priority), we have that
for any threshold B, cluster CB(vr−1) includes all
vertices within delay distance B of vr−1. In partic-
ular, the vertex wr will be at least β delay-distance
away from vr−1 (recall: β is our upper bound on

cluster thresholds), because otherwise it would be in
Cd(wr)(vr−1), contradicting how we chose wr. Hence,
if we get that far without finding a suitable index j,
then we will necessarily have d(wr) ≥ β > B(r − 1),
so j = r will be our desired index.

We have shown that our standard path to wi
always fits one of the three cases from the ”what we
want” section, so by our proof in the ”why this is
enough” section, this guarantees a (1 + ε), (1 + ε)
shortest T ′-path from x to y with at most εT ′/6
edges.

There are two last technical caveats to cover.
Firstly, as our path to wi progressed, the shortcut
edges got bigger and bigger. Could this not pose
a problem, since we only computed clusters up to

threshold β =
√

log(n) · (7/ε)
√

log(n)+4? It does not
pose a problem because the largest delay distance
we ever needed to cover for the above cases to work
out was d(wj) = B(r − 1) < β. Thus, if the delay
from vj−1 to w′j – our usual shortcut edge – is ever
bigger than β, the we can safely go from vj−1 to
some closer w∗j that is β units away, as this will still
satisfy all the properties of the three cases.

Another caveat is that our argument relies on
the notion that it is okay for us to take some detours
when we climb in vertex priority because we can

200 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

make up for them later. But this requires that the
original path P ′ is long enough for us to have the
space to do this. In particular, the largest distance
we ever needed to cover for the approximation
analysis for work out was B(r − 1) < β, so we
need the original path P ′ from x to y to have delay
distance at least β. But if it has delay-distance less
than β then it must have less than β edges (Recall
that all delay-weights we work with are natural
numbers because the first step of our alorithm is
to apply the transformation of Theorem 3.1 to the
original graph), so we can just finish off the last small
segment of P ′ by directly following the path P ′ (no

shortcut edges), hence using only β = (2
ε)O(
√
log(n))

additional edges. This is why in Lemma 5.1, we can

only guarantee an AHD of MAX{εT ′/6, (2
ε)O(
√
log(n))}.

7 Concluding Remarks

We have presented a new approach to the restricted
shortest path problem in undirected graphs that
allowed us to break through a long-standing O(mn)
barrier and achieve a near-linear running time. See
section 3 for an overview of our techniques. This
paper is only a first step, however, and there are many
problems left to be solved. We hope our framework
could provide a direction for some of them.

1. Is there an o(mn) algorithm for directed graphs?
To use our approach, one would need to con-
struct a small hop diameter emulator for directed
graphs. Note that whereas sparsification is prov-
ably impossible in directed graphs – even with
approximation – this is not the case for reduc-
ing the hop diameter. We already know several
emulators that do so, but we only know how to
construct them in O(mn) time, not o(mn) time.

2. Is there an o(mn) algorithm that approximates
only the cost, while exactly preserving the
threshold? To use our approach, one would need
to construct an emulator that reduces not just
the approximate hop diameter, but the exact hop
diameter. Such emulators exist, but as in the di-
rected case, it takes us O(mn) time to construct
them.

3. Can we polish up our algorithm to remove the

(2
ε)O(
√
log(n) log log(n)) and achieve a running time

of Õ(mn/poly(1/ε))?

4. Can the ideas in our algorithm be applied to the
multi-constrained shortest path problem? (This
is the natural generalization of the restricted
shortest path problem – see Section 1.3).

8 Acknowledgments

I would like to thank Professor Mihalis Yannakakis
for some very fruitful discussions, and my friend Raju
Krishnamoorthy for his thoughtful suggestions.

References

[1] A. Bernstein. Fully dynamic approximate all-pairs
shortest paths with query and close to linear update
time. In Proc. of the 50th FOCS, pages 50–60,
Atlanta, GA, 2009.

[2] I. Diakonikolas and M. Yannakakis. Small approxi-
mate pareto sets for biobjective shortest paths and
other problems. SIAM J. of Computing, pages
1340–1371, 2009.

[3] M. Garey and D. Johnson. Computers and In-
tractability: a Guide to the Theory of NP Complete-
ness. W.H.Freeman, San Francisco, 1979.

[4] A. Goel, K. Ramakrishnan, D. Kataria, and D. Lo-
gothetis. Efficient computation of delay-sensitive
routes from one source to all destinations. INFO-
COOM 2001, 2.

[5] G. Handler and I. Zang. A dual algorithm for
the constrained shortest path problem. Networks,
10(4):293–309, 1980.

[6] R. Hassin. Approximation schemes for the restricted
shortest path problem. Mathematics of Operations
Research, 17:36–42, 1992.

[7] D. H. Lorenz and A. Orda. Qos routing in networks
with uncertain parameters. IEEE/ACM Transac-
tions on Networking, 6:768–778, 1998.

[8] D. H. Lorenz and D. Raz. A simple efficient
approximation scheme for the restricted shortest
path problem. Operations Research Letters, 28:213–
219, 1999.

[9] G. Rosario and T. Luca. A survey on multi-
constrained optimal path computation: Exact and
approximate algorithms. Comput. Netw., 54:3081–
3107, December 2010.

[10] M. Thorup and U. Zwick. Approximate distance
oracles. Journal of the ACM, 52(1):1–24, 2005.

[11] M. Thorup and U. Zwick. Spanners and emulators
with sublinear distance errors. In Proc. of the 17th
SODA, pages 802–809, Miami, Florida, 2006.

[12] A. Warburton. Approximation of pareto optima in
multiple-objective shortest path problems. Opera-
tions Research, 35:70–79, 1987.

[13] G. Xue and S. K. Makki. Multi-constrained qos
routing: a norm approach. IEEE Transactions on
Computers, 56(6):859–863, 2007.

[14] G. Xue, W. Zhang, J. Tang, and K. Thulasira-
man. Polynomial time approximation algorithms for
multi-constrained qos routing. IEEE/ACM Trans.
Netw., 16:656–669, June 2008.

201 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

