
Deterministic Partially Dynamic Single Source Shortest Paths for Sparse
Graphs

Aaron Bernstein ∗ Shiri Chechik †

November 2, 2016

Abstract
In this paper we consider the decremental single-source
shortest paths (SSSP) problem, where given a graph G
and a source node s the goal is to maintain shortest paths
between s and all other nodes in G under a sequence of
online adversarial edge deletions. (Our algorithm can also
be modified to work in the incremental setting, where the
graph is initially empty and subject to a sequence of online
adversarial edge insertions.)

In their seminal work, Even and Shiloach [JACM 1981]
presented an exact solution to the problem with only O(mn)
total update time over all edge deletions. Later papers
presented conditional lower bounds showing that O(mn) is
optimal up to log factors.

In SODA 2011, Bernstein and Roditty showed how
to bypass these lower bounds and improve upon the Even
and Shiloach O(mn) total update time bound by allowing
a (1 + ε) approximation. This triggered a series of new
results, culminating in a recent breakthrough of Henzinger,
Krinninger and Nanongkai [FOCS 14], who presented a
(1 + ε)-approximate algorithm whose total update time is

near linear: O(m1+O(1/
√

logn)).
However, every single one of these improvements over

the Even-Shiloach algorithm was randomized and assumed a
non-adaptive adversary. This additional assumption meant
that the algorithms were not suitable for certain settings
and could not be used as a black box data structure. Very
recently Bernstein and Chechik presented in STOC 2016
the first deterministic improvement over Even and Shiloach,
that did not rely on randomization or assumptions about the
adversary: in an undirected unweighted graph the algorithm
maintains (1+ε)-approximate distances and has total update

time Õ(n2).
In this paper, we present a new deterministic algorithm

for the problem with total update time Õ(n1.25√m) =

Õ(mn3/4): it returns a (1 + ε) approximation, and is limited
to undirected unweighted graphs. Although this result is still
far from matching the randomized near-linear total update
time, it presents important progress towards that direction,
because unlike the STOC 2016 Õ(n2) algorithm it beats the
Even and Shiloach O(mn) bound for all graphs, not just

sufficiently dense ones. In particular, the Õ(n2) algorithm
relied entirely on a new sparsification technique, and so could
not hope to yield an improvement for sparse graphs. We
present the first deterministic improvement for sparse graphs

∗Department of Mathematics, Technical University of Berlin,

Berlin, Germany. Email: bernstei@gmail.com. This research was

supported by the Einstein Grant in Berlin.
†Department of Computer Science, Tel-Aviv University, Israel.

Email: shiri.chechik@gmail.com. This research was supported

by the ISRAEL SCIENCE FOUNDATION (grant No. 1528/15).

by significantly extending some of the ideas from the Õ(n2)
algorithm and combining them with the hop-set technique
used in several earlier dynamic shortest path papers.

Also, because decremental single source shortest paths

is often used as a building block for fully dynamic all pairs

shortest paths, using our new algorithm as a black box yields

new deterministic algorithms for fully dynamic approximate

all pairs shortest paths.

1 Introduction

In this paper we study the dynamic shortest paths
problem, where the goal is to maintain shortest path
information in a graph that changes over time. In the
most general fully dynamic model, an update to the
graph can insert or delete an edge, or change an edge
weight. This general setting is often very difficult, so
many researchers have tried to develop better results in
the partially dynamic model, which restricts the set of
possible updates: the decremental setting allows only
edge deletions and edge weight increases (i.e. the graph
is deteriorating), whereas the incremental setting allows
only edge insertions and weight decreases.

In this paper we consider the problem of (approxi-
mate) single source shortest paths (SSSP) in unweighted
undirected graphs. Our algorithm can be made to work
in both the incremental and decremental settings, but
for the rest of the paper we focus on the decremental
setting, as it is typically the harder one. Specifically, we
start with some original unweighted undirected graph G
and a source node s, and the algorithm must process an
online intermixed sequence of two different operations:
1) Delete(e) – delete the edge e from the graph. 2)
Distance(v) – return the distance between s and v, i.e.,
dist(s, v), in the current graph G.

Fully dynamic shortest paths has a very clear mo-
tivation, as computing shortest paths in a graph is one
of the fundamental problems of graph algorithms, and
many shortest path applications must deal with a graph
that is changing over time. The incremental setting is
somewhat more restricted, but is applicable to any set-
ting in which the network is only expanding. The decre-
mental setting is often very important from a theoretical

453 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

perspective, as decremental shortest paths (and decre-
mental single source shortest paths especially) are used
as a building block in a large variety of fully dynamic
shortest paths algorithms; see e.g. [14, 3, 1, 2]. In fact,
as we discuss in Section 1.2, using our new decremental
single source shortest paths result as a black box imme-
diately yields new results for deterministic fully dynamic
all pairs shortest paths. Decremental shortest paths can
also have applications to non-dynamic graph problems;
see e.g. Madry’s paper on efficiently computing multi-
commodity flows [17].

We say that an algorithm has an approximation
guarantee of α if its output to the query Distance(v)
is never smaller than the actual shortest distance and is
not more than α times the shortest distance.

Dynamic algorithms are typically judge by two
parameters: the time it takes the algorithm to adapt
to an update (the Delete operation), and the time to
process a query (the Distance operation). Typically one
tries to keep the query time small (polylog or constant),
while getting the update time as low as possible. All
the algorithms discussed in this paper have constant
query time, unless noted otherwise. In the decremental
setting, which is the focus of this paper, one usually
considers the aggregate sum of update times over the
entire sequence of deletions, which is referred to as the
total update time.

1.1 Related work The most naive solution to dy-
namic SSSP is to simply invoke a static SSSP algorithm
after every deletion, which requires Õ(m) 1 time, using
e.g. Dijkstra’s algorithm. Since there can be a total of
m deletions, the total update time for the naive imple-
mentation is thus Ω(m2).

For fully dynamic SSSP, nothing better than the
trivial O(m2) total update time is known. That is, we
do not know how to do better than reconstructing from
scratch after every edge update. For this reason, re-
searches have turned to the decremental (or incremen-
tal) case in search of a better solution.

The first improvement stems all the way back to
1981, when Even and Shiloach [8] showed how to achieve
total update time O(mn) in unweighted undirected
graphs. A similar result was independently found by
Dinitz [7]. This was later generalized to directed graphs
by King [16]. This O(mn) total update time bound is
still the state of art, and there are conditional lower
bounds [18, 13] showing that it is in fact optimal up
to log factors. (The reductions are to boolean matrix
multiplication and the online matrix-vector conjecture
respectively).

1The Õ notation suppresses polylogarithmic factors.

These lower bounds motivated the study of the ap-
proximate version of this problem. In 2011, Bernstein
and Roditty [5] presented the first algorithm to beyond
the O(mn) bound of Even and Shiloach [8]: they pre-
sented a (1 + ε) decremental SSSP algorithm for undi-
rected unweighted graphs with constant query time and
O(n2+O(1/

√
logn)) = O(n2+o(1)) total update time. Hen-

zinger, Krinninger and Nanongkai [11] later improved
the total update time for to O(n1.8+o(1) +m1+o(1)), and
soon after the same authors [9] achieved a close to opti-
mal total update time ofO(m1+o(1) logW) in undirected
weighted graphs, where W is the largest weight in the
graph (assuming the minimum edge weight is 1).

Henzinger, Krinninger, and Nanongkai also showed
that one can go beyond O(mn) total update time
bound in directed graphs (with a (1+ε) approximation)
[10, 12], although the state of art is still only a small
improvement: total update time O(mn0.9+o(1) logW).

However, every single one of these improvements
over the O(mn) bound relies on randomization, and has
to make the additional assumption of a non-adaptive
adversary. In particular, they all assume that the up-
dates of the adversary are completely independent from
the shortest paths or distances returned to the user,
i.e. that the updates are fixed in advance. This makes
these algorithms unsuitable for many settings, and also
prevents us from using them as a black box data struc-
ture. For example, if we were to use dynamic shortest
paths to route packages in a changing graph, then if
edges on the paths used for routing were slightly more
likely to deteriorate we would not have independence
between updates and queries, and we could not use a
non-adaptive algorithm.

Very recently, Bernstein and Chechik [4] presented
the first deterministic algorithm to go beyond O(mn)
total update time: their algorithm achieves total up-
date time Õ(n2) in undirected unweighted graphs, again
with a necessary (1 + ε) approximation. See Section 1.2
of their paper for a detailed discussion of why it is es-
pecially important to develop deterministic algorithms
for this problem (in short: to avoid the non-adaptivity
assumption), but also of why an entirely new set of tech-
niques seems to be required.

The algorithm of Bernstein and Chechik relies on
a new deterministic sparsification technique. For this
reason, their Õ(n2) total update time only constitutes
an improvement over O(mn) in dense graphs: for graphs
that are already sparse, their techniques have no effect.
In this paper, we set out to develop deterministic
techniques that allow us to go beyond the O(mn) bound
in sparse graphs.

454 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

1.2 Our Results

Theorem 1.1. Given an undirected unweighted graph
G subject to a sequence of edge deletions, and a fixed
source s, there exists a deterministic algorithm that
maintains (1+ ε) approximate distances from s to every
vertex in total update time O(n1.25

√
m log(n)ε−1.25) =

Õ(mn3/4ε−1.25). The query time is O(1).

We can easily extend our algorithm to work for
graphs with small positive integer weights, at the cost
of multiplying the update time by O(W). We can also
extend our algorithm to work in the incremental setting,
where we start with an empty graph, and the adversary
inserts edges one at a time.

Our result is still far behind the state of the art
randomized result (O(m1+o(1)) total update time), but
it is the first deterministic algorithm to go beyond the
classic O(mn) total update time bound in all graphs,
not just dense ones. In addition to being important as
a proof of possibility, we believe that the techniques for
sparse graphs developed here could possibly be of use
in further deterministic algorithms for this problem.

Decremental SSSP algorithms are often used as a
building block in fully dynamic all pairs shortest path
algorithms (APSP). In fact, using our algorithm as
a black box in a fully dynamic APSP algorithm of
Bernstein [3] yields the theorem below. (We simply use
our new decremental SSSP algorithm of Theorem 1.1
instead of the standard Even and Shiloach algorithm in
the algorithm in Section 3 of [3].)

Theorem 1.2. There exists a deterministic fully dy-
namic APSP algorithm with an approximation error of
(2 + ε) that has update time Õ(mn3/4ε−1.25) and con-
stant query time.

The previous best deterministic algorithm for the
problem (Demetrescu and Italiano, 2004 [6]) achieves
O(n2) update time (per operation), though it is sig-
nificantly more general: it returns exact distances and
works in weighted directed graphs. Our algorithm
serves primarily as a proof of possibility, as it is the
first deterministic algorithm to achieve update time
o(mn) for sparse graphs. The fastest randomized (and
non-adaptive) algorithm is that of Bernstein [3], which
achieves a (2 + ε) approximation with O(m1+o(1)) up-
date time. Note that Theorem 1.2 uses our main result
in Theorem 1.1 as a black box: we suspect one could sig-
nificantly improve upon this bound with a more sophis-
ticated application of the new deterministic techniques
in this paper.

The next section defines some preliminaries. Then
present an overview of our techniques (Section 3).

2 Preliminaries

We consider the decremental setting in which edges are
being deleted one by one from an initial graph. We
assume the main graph is unweighted and undirected.
Let G = (V,E) always refer to the current version of
the graph. Let m be the number of edges in the original
graph, and n the number of vertices.

For any pair of vertices u, v, let π(u, v) be the short-
est u − v path in G (ties can be broken arbitrarily),
and let dist(u, v) be the length of π(u, v). Let s be
the fixed source from which our algorithm must main-
tain approximate distances, and let ε refer to our ap-
proximation parameter; when the adversary queries the
distance to a vertex v, the algorithm must return an

approximate distance d̂ist(v) such that dist(s, t) ≤
d̂ist(s, t) ≤ (1 + O(ε))dist(s, t); if we wanted a strict
(1 + ε)-approximation, we could simply run with algo-
rithm with ε′ = ε/c for large enough constant c. Some
of our auxiliary graphs will have weights, in which case
we set ω(u, v) to be the weight of edge (u, v).

Let B(v, r) (B for ball) for a vertex v and radius r
be the set of vertices at distance at most r from v in G,
that is B(v, r) = {u ∈ V | dist(v, u) ≤ r}. Let N(v, r)
(N for neighborhood) for an integer r and a vertex v be
the set of nodes at distance exactly r from v, that is,
N(v, r) = {u ∈ V | dist(v, u) = r}. For a vertex v, let
deg(v) be the degree of v in G. For a set of vertices S,
let deg(S) =

∑
v∈S deg(v).

We will measure the update time of the dynamic
subroutines used by our algorithm in terms of their total
update time over the entire sequence of edge changes.
Note that although edges in the main graph G are only
being deleted, there may be edge insertions into the
auxiliary graphs used by the algorithm.

Definition 2.1. Given a graph G subject to a sequence
of edge deletions and insertions, define max-edges(G)
to be the number of pairs (u, v) such that edge (u, v) is
in G at some point during the update sequence. Note
that if the update sequence contains only deletions, then
max-edges(G) is simply the number of edges in the
original graph.

2.1 Even and Shiloach We next state the result of
the classic Even-Shiloach algorithm [8]. This algorithm
runs faster when it only needs to maintain shortest dis-
tances up to some small distance threshold d. The basic
idea is that the algorithm spends O(deg(v)) whenever
dist(s, v) changes. This is true for both insertions and
deletions, but the algorithm only yields good bounds if
the update sequence never decreases distances, in which
case every dist(s, v) can only change d times before it
exceeds the distance threshold, so we get the bound in

455 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Lemma 2.1 below:

Definition 2.2. Given any number d, the function
boundd(x) is equal to x if x ≤ d, and to ∞ otherwise.

Definition 2.3. Let G be a dynamic graph subject to
a sequence of edge insertions and deletions, let s be
a fixed source, and let d be some depth bound. Then,
the Even-Shiloach algorithm ES(G, s, d) maintains the
value boundd(dist(s, v)) for every vertex v over the
entire sequence of changes to G. We refer to this as
running an Even and Shiloach tree in G from source s
up to depth d.

Lemma 2.1. [8] Let G = (V,E) be a graph with posi-
tive integer weights subject to an online sequence of in-
sertions and deletions, let s be a fixed source, and say
that for every vertex v we are guaranteed that dist(s, v)
never decreases due to an edge insertion. Then, the to-
tal update time of ES(G, s, d) over the entire sequence of
edge updates is O(m·d+∆), where m = max-edges(G),
and ∆ is the total number of updates.

The classic ES algorithm can only handle edge
insertions under the assumption that they never de-
crease distances. Henzinger et al. developed a modifica-
tion of this algorithm which can handle occasional dis-
tance decreases, which they called the Monotone Even-
Shiloach algorithm, denoted MES. The basic idea is
that MES simply ignores distance decreases. More
precisely, the classic ES algorithm maintains for ev-
ery vertex v a distance label `(v) with the guaran-
tee that we always have `(v) = dist(s, v). MES,
on the other hand, will only guarantee that `(v) ≥
dist(s, v). It does so by running classical ES, with
one modification: whenever classic ES adds an edge
(u, v) to the shortest path tree, it sets `new(v) =
min

{
`(u) + ω(u, v), `old(v)

}
. MES, on the other

hand, sets `new(v) = max
{
`(u) + ω(u, v), `old(v)

}
.

Definition 2.4. Let MES(G,s,d) refer to running
monotone Even-Shiloach from a fixed source s up to dis-
tance d. In particular, whenever we have `(v) > d, we
remove v from the graph.

We now turn to analyzing the total update time of
MES. Note that we do not give an approximation anal-
ysis here since distance labels in MES are not firmly
tethered to the actual shortest distances, there is no
general approximation guarantee that would work for
an arbitrary sequence of insertions and deletions. Every
invocation of MES will require a separate approxima-
tion error analysis to show that for the particular graph
and update sequence at hand, `(v) remains a good ap-
proximation to dist(s, v).

2.2 A New Extension of Even and Shiloach
The Even-Shiloach algorithm, whether the monotone or
classical version, spends O(deg(v)) time whenever the
distance label `(v) changes. In particular, if we could
guarantee that at all times the graph has maximum
degree D, then ES and MES would only require D
time per label increase. In this section, we present a
slight generalization of this argument.

Definition 2.5. Given a dynamic graph G = (V,E),
a dynamic assignment A : E → V assigns each edge
(u, v) to one of u or v. A must assign each edge
(u, v) the moment the edge is inserted into the graph,
and cannot change this assignment. We say than an
assignment has maximum load α if at any time during
the dynamic update sequence, every vertex v has at
most α edges assigned to it. (Dynamic assignments
are analogous to the more commonly used notion of a
dynamic orientation, except that in our definition once
an edge e is inserted, its assignment must remain fixed
until e is deleted.)

Lemma 2.2. Let G = (V,E) be a directed graph with
positive integer weights subject to a sequence of online
insertions and deletions, and say that there is a dynamic
assignment A with maximum load α. Then, there is an
implementation of MES(G, s, d) with total update time
O(∆+ndα), where ∆ is the total number of edge updates
made to G.

Proof. Conceptually the proof only involves a small
modification to the classical ES algorithm, but the
details are rather technical because in order to make
our modification, we have to go over all the details of
the classical ES algorithm.

Let us first recall the high level of the Even-
Shiloach algorithm in a setting with only deletions. The
algorithm maintains a shortest path tree T from the root
s. We say an edge (u, v) is a tree edge if (u, v) ∈ T , and
a non-tree edge if (u, v) ∈ E \ T . Whenever a non-tree
edge is deleted, shortest distances do not change, so the
algorithm does not have to do much. Now, consider
the deletion of a tree edge (u, v) where u is the parent
of v in T . The algorithm checks in constant time (by
storing the edges in a clever way) if v has another edge
to a vertex z with `(v) = `(z) + ω(z, v). If so, the
edge is added to the tree and the distances to all nodes
remain the same. If not, the distance dist(s, v) must
increase. The algorithm then examines the children of
v and checks if they can be attached to the tree without
increasing their distance in a similar manner. The
algorithm keeps a list of all vertices such that either their
label increased in the current update or the label of their
parent increased. Each time the algorithm discovers

456 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

that the label of a vertex v must increase, it increases
it by 1 (which is the most optimistic label it can get)
and returns it to the list in at attempt to reattach v
with this higher label. The algorithm examines the
vertices in the list in an increasing order of their label.
Note that the label of a vertex may be increased many
times as a result of an update. This means that the
algorithm removes and adds it many times to the list.
Since dist(s, v) can increase at most d times for any
node v, this algorithm has O(md) total update time.
Essentially, to implement both the ES and the MES
algorithms, we need to describe the implementation of
two operations. First, an operation that for a vertex
v checks if there is an edge that reconnects it to the
tree without increasing its distance label. Second, when
some `(v) increases, we need an operation that returns
a list of vertices whose label might have increased as a
result of `(v) increasing. In classical ES, this second
operation just returns all vertices w such that (v, w)
was a tree edge. In MES, however, since distances
can decrease but distance labels cannot, it might be
the case that even though (v, w) is a tree edge we have
`(v) + ω(v, w) < ω(w), in which case `(v) increasing by
1 will not actually affect `(w); we would like to be able
to detect this case in advance and avoid wasting time
looking at `(w).

We start by describing the information that our im-
plementation of the algorithm maintains. We will later
explain how the algorithm maintains this information.
Recall that by the assumption of the Lemma, we main-
tain a dynamic assignment A with maximum load α (see
Definition 2.5).

For every vertex v and every distance 1 ≤ i ≤ d,
let Pi(v) (P stands for potential parents) be the set
of edges (u, v) such that `(u) + ω(u, v) = i and the
edge (u, v) is not assigned to v. In addition, let Ci(v)
(C stands for children) be the set of edges (u, v) such
that `(u) − ω(u, v) = i and the edge (u, v) is not
assigned to v. The algorithm maintains the sets Pi(v)
and Ci(v) for every 1 ≤ i ≤ d. In addition, the
algorithm maintains a list Psmall(v) that contains all
edges (u, v) such that `(u) + ω(u, v) ≤ `(v). Note
that, Psmall(v) = ∪i≤`(v)Pi(v). Similarly, the algorithm
maintains a list Csmall(v) of all tree edges (u, v) such
that `(u) − ω(u, v) ≤ `(v). Note that, Csmall(v) =
∪i≤`(v)Ci(v) ∩ E(T). Finally, the algorithm maintains
a set A(v) (A stands for assigned) for every vertex v
that is a subset of the edges assigned to v. Intuitively,
when v loses the edge to its parent, or when the parent
of v increases its label, the set A(v) will contain all the
edges assigned to v that could potentially replace the
edge from v to its parent.

Next, we explain the implementation of the algo-

rithm along with how to maintain these sets. It is not
hard to verify that initially after the algorithm con-
structs a shortest path tree from s in the original graph,
all these sets can be computed in O(m) time.

When a new edge is added distances might decrease,
but distance labels cannot change because MES never
decreases distance labels. Thus, it is not hard to verify
that in constant time we can add the newly inserted
edge to all the sets it should be part of. Moreover,
when a new replacement edge (u, v) is added to the tree,
in constant time we can add it to the list Csmall(v)
if `(u) − ω(u, v) ≤ `(v). Similarly, when an edge is
deleted the algorithm removes it in O(1) time from all
sets containing it. A deletion of a tree edge, however,
will also force the algorithm to look for replacement
edges, and might also change distance labels. When a
vertex v loses its edge to its parent or when the distance
label of the parent of v increases, the algorithm does the
following. First, the algorithm needs to search if there is
an alternative edge to v without increasing its distance
label. That is, we are looking for an edge (u, v) such
that `(u) + ω(u, v) ≤ `(v). In O(1) time the algorithm
checks if there is such an edge that is not assigned to v.
This can be done by simply checking if the set Psmall(v)
is not empty, in which case any edge in Psmall(v) is a
good replacement edge and the label of v remains the
same and this edge is added to the tree. Otherwise, we
need to check if there is such an edge (u, v) such that
`(u)+ω(u, v) ≤ `(v) and the edge (u, v) is assigned to v.
To do so, the algorithm starts traversing the edges (u, v)
in A(v). For each such edge (u, v), the algorithm checks
if `(u) + ω(u, v) ≤ `(v); if so the desired edge has been
found and this edge is added to the tree. Otherwise,
delete the edge (u, v) from A(v) and move to the next
edge in A(v). If A(v) becomes empty then the label of
v must increase by at least 1.

When the label of v increases by 1 the algorithm
does the following:

• It adds to A(v) all edges assigned to v.

• For every edge (u, v) ∈ E that is assigned to v, the
algorithm updates the list Pi(u) where i = `(v) +
ω(u, v), and the list Cj(u) where j = `(v)−ω(u, v).

• For every edge (u, v) assigned to v, the algorithm
updates the lists Psmall(u): if `(v) +ω(u, v) > `(u)
and Psmall(u) contains the edge (u, v) then remove
the edge (u, v) from Psmall(u).

• For every edge (u, v) assigned to v, the algorithm
updates the lists Csmall(u): if `(v)−ω(u, v) > `(u)
and Csmall(u) contains the edge (u, v) then remove
the edge (u, v) from Csmall(u).

457 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

• Assume the label `(v) increases from i to i+ 1, the
algorithm checks if Pi+1(v) is not empty and if so
it adds Pi+1(v) to Psmall(v).

• Assume the label `(v) increases from i to i+ 1, the
algorithm checks if Ci+1(v) is not empty and if so
it add all tree edges in Ci+1(v) to Csmall(v).

• The algorithm for all vertices u such that either
the edge (u, v) is assigned to v or the edge (u, v) ∈
Csmall(v) continues recursively: i.e., checks for a
replacement edge to attach u without changing its
label, and if no such edge is found, the algorithm
increase the distance label `(u). Note that v itself
is also added to the list of vertices which need a
new tree edge, though the distance label of v has
increased by 1, so this time we are searching for an
edge that will keep v at distance label `old(v) + 1.

In order to see that the algorithm is a valid imple-
mentation of MES, first note that the sets Pi(v) and
Ci(v) are always updated as each time the label of u
increases it updates the sets Pi(v) and Ci(v) for every
edge (u, v) owned by u. As the sets Pi(v) and Ci(v) are
always up to date, it is not hard to see that Psmall(v)
and Csmall(v) are also up to date.

Note that every edge that was deleted from A(v)
cannot be used as a replacement edge to v; that is, if u is
deleted from A(v), then making u the parent of v would
increase `(v). It follows that the replacement edge of
v can only be in the sets Psmall(v) or A(v). Therefore
if there exists a replacement edge to v that does not
change the label of v, our implementation will find it.
Moreover, note that when the distance label of a node v
increases by 1, `(u) can only increase for children u such
that either u ∈ Csmall(v) or the edge (u, v) is assigned
to v. It follows that our implementation increase all the
required distance labels.

Finally, we bound the total update time of our
implementation.

First, note that our algorithm in order to check if v
has a replacement edge spends O(1) +O(j) time, where
j is the number of edges considered by the algorithm in
A(v). Let us first bound the second term for all vertices
and for all updates. Note that each edge in A(v) that
is considered by the algorithm is also deleted afterward
from A(v). Hence, we only need to bound the number
of insertions to A(v). Note that an edge is inserted to
A(v) only when it is first added to the graph or when
the label of v increases and the edge is assigned to v.
There are always at most α edges assigned to v and its
label can increase at most d times. It follows that the
number of insertions to A(v) is at most O(αd + ∆(v)),
where ∆(v) is the number of edge updates made to G

for edges incident v. All in all, the total update time
for all vertices is O(∆ + ndα).

To bound the O(1) term for checking if v has a
replacement edge, we charge this cost to the parent u
of v whose distance label increased (similarly to the
analysis of the Even-Shiloach) or to the edge deletion
(u, v). The number of edge deletions is at most O(m+
∆), where m is the number of the edges in the original
graph: but clearly m ≤ nα because we have an
assignment with max load α. We are left with the case
where the label of u increases.

Recall that when the label of u increases, the
algorithm examines all nodes z such that either the edge
(u, z) is assigned to u or the edge (u, z) ∈ Csmall(u).
There are at most α edges of the first type. As the
label of u can increase at most d times, this gives O(dα)
total update time charged to vertex u as a result of its
child along an assigned edge looking for a replacement
edge; therefore, at most O(dαn) total update time for
all vertices. Consider now the edges (u, z) ∈ Csmall(u).
Note that u is the parent z. Note also by straightforward
calculations that if (u, z) ∈ Csmall(u) then the next time
u will be the parent of z, the label of z must increase. We
can therefore bound this update time by the following
charging argument. Each time the label of z increases
it adds a charge of 1 to all sets Csmall(u) such that
(u, z) is assigned to z. As mentioned above, the edge
(u, z) can be added at most once to Csmall(u) before
the label of z increases again. In addition, each time a
new edge is added to the graph and also to Csmall(u)
the algorithm also give it a credit of 1. In order to
bound the update time of this part, we need to bound
the amount of credits. It is not hard to verify that this
is O(αnd+ ∆) total update time for all vertices.

Let us now turn to bound the update time for a
distance label increase. Consider a vertex v such that its
distance label increased. Note that a constant number
of operations are done to all edges assigned to v. This
costs O(1) time for every such edge. There are α such
edges. The distance label of v can increase at most d
times. This costs O(dα) time for a vertex v for all label
increases and O(ndα) total update time for all vertices
and all labels increases.

We are left with bounding two additional opera-
tions. That is, adding Pi+1(v) to Psmall(v), when the la-
bel of v increases from i to i+1 and adding all tree edges
in Ci+1(v) to Csmall(v). Note that every edge (u, v) as-
signed to u can be added at most once to Psmall(v) and
Csmall(v) before the label of u increases. Hence, this can
be bounded by O(α) for the vertex u for each time its
distance label increases and therefore at most O(nαd)
for all vertices and for all label increases.

Corollary 2.1. Let G = (V,E) be a graph with posi-

458 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

tive weights which are all an integer multiple of some
number x, and say that there is a dynamic assign-
ment A with maximum load α. Then, there is an im-
plementation of MES(G, s, d) with total update time
O(∆ + ndα/x). (Divide all weights by x and invoke
Lemma 2.2.)

3 Overview of Techniques

In their deterministic Õ(n2) total update time algorithm
[4], Bernstein and Chechik partitioned the graph into
light and heavy vertices according to their degree.
Because light vertices had low degree they were easier
to work with. The algorithm handled heavy vertices by
arguing that any shortest path only contained a small
number of heavy vertices, and so they only made a
minor contribution the shortest distance and could be
effectively ignored. In particular they showed that it
is enough to maintain dynamic shortest paths on the
light parts of the graph, while only maintaining dynamic
connectivity information for the heavy parts.

We also partition the graph into heavy and light
vertices, where the light vertices are easier to work
with and the heavy vertices can be effectively ignored
because there are only so many of them on a shortest
path. However, we do not partition vertices according
to degree, as this would be of little use in a graph that
is already sparse. Instead, we say that a vertex v is light
if the graph is not dense in the local region of v.

For the sake of intuition, let us say that all vertices
in G have constant degree. In this case, both the Even
and Shiloach algorithm [8] and the one of Bernstein and
Chechik [4] achieve total update time Õ(n2). In this
overview, we outline an algorithm that achieves total
update time O(n11/6) for this setting (our full algorithm
achieves O(n7/4)).

We start by observing that short distances are easy
to handle: we can run ES(G, s, 100n5/6/ε) to handle all
vertices up to distance O(n5/6). So we only need to
focus on vertices v for which dist(s, v)� n5/6.

Say that a vertex v is light if B(v, n1/4) contains at
most

√
n vertices, and heavy otherwise. Using a similar

argument to the one in the algorithm of Bernstein and
Chechik [4], we can show that any shortest path contains
at most O(n3/4) heavy vertices. Thus, since we only
care about vertices v for which dist(s, v) � n5/6, we
will be able to effectively ignore the heavy vertices.

Since we can ignore heavy vertices, let us assume for
the rest of this section that all vertices are light. Unlike
in the algorithm of Bernstein and Chechik [4], where an
all-light graph immediately gave better bounds because
it was guaranteed to be sparse, it is not immediately
clear how to take advantage of low-density vertices. To
this end, we take of advantage of hop sets, a technique

used in several other shortest path algorithms.
Observe that for any light vertex v, we can use the

ES algorithm to maintain B(v, n1/4) in total update
time O(n3/4): since we are in a decremental setting,
the ball B(v, n1/4) is only shrinking, so v only has to
maintain distances up to depth n1/4 in a graph with
O(
√
n) edges (recall: we are assuming that vertices have

constant degree). Thus, we could maintain all light balls
in total time O(n7/4).

We avoid going into a detailed discussion of hop
sets in general, since ours is especially simple. For every
light vertex v and every w ∈ B(v, n1/4), we add an edge
(v, w) of weight dist(v, w). Let G+ be the new graph
with additional edges. It is easy to see that distances
in G+ are the same as in G. But notice that in G+,
for any vertex v there is a shortest path from s to v
with O(n3/4) edges. We now do the following: we take
every edge in G+, including the original edges of G,
and we round up their weights to the nearest multiple
of n1/6. It is not hard to see that distances in this
rounded graph GR are off from distances in G by at
most an additive error of O(n5/6): for any vertex v, we
know that there is a shortest path from s to v in G+

with at most O(n3/4) edges, each of which incurs an
additive error of n1/6. But since we only care about
vertices v with dist(s, v) � n5/6, this additive error
is subsumed in our (1 + ε) approximation. It thus
suffices to maintain distances from s in GR, which is
easy because all weights are a multiple of n1/6, so we
can scale all distances down by n1/6, so ES(GR, s, n)
runs in time O(n2/n1/6) = O(n11/6) (see Corollary 2.1).

All in all, while the idea of partitioning into light
and heavy vertices comes from the paper of Bernstein
and Chechik [4], we partition along an entirely different
criteria: density rather than degree. This allows us to
achieve an improvement in sparse graphs as well. That
being said, low density is much harder to take advantage
of than low degree, and much of our paper must deal
with these extra difficulties. Firstly, our auxiliary graph
is a hopset rather than a standard sparsification, so it
tends to change a lot as the main graph G changes,
and we need additional tools to analyze the resulting
running time and approximation error. Secondly, the
graph G+ ends up being much denser than G, so if we
actually added an edge from v to every w ∈ B(v, n1/4)
we could not get total update time below Õ(n2). To
resolve this issue, we introduce a simple new technique
for reducing the number of edges in a hop set, which
we believe might be useful in future applications. In
particular, we observe that it is enough to add edges
from v to all vertices in N(v, i) for some r(1−ε) ≤ i ≤ r,
instead of to the whole ball B(v, r). We can argue by the
pigeonhole principle that we can always find an i such

459 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

that |N(v, i)| is relatively small. We also need additional
tools to handle the fact that the appropriate level i
might change over time, so we will need to perform many
edge insertions and deletions.

Most of the new ideas in this paper are contained
in Section 4 (partitioning along density) and Section 6.1
(analyzing the hop set); once we partition into light and
heavy vertices, the details of how we separate out the
heavy vertices (Section 5) are similar to those of Section
4 in [4].

4 Heavy and Light Vertices

Definition 4.1. Given a graph G and positive integer
thresholds τn, τm and a radius r, we say that a vertex v
in G is (τn, τm, r)-heavy if at least one of the following
is true:

• |N(v, 1)| > τn/r or

• |B(v, r)| > τn or

• deg(B(v, r)) > τm.

We say that v is (τn, τm, r)-light otherwise.
Let heavy(τn, τm, r) be the set of all (τn, τm, r)-

heavy vertices in G; note that when we say that a vertex
v is (τn, τm, r)-heavy or (τn, τm, r)-light, this is always
with respect to the main graph G, never with respect to
any other graph the algorithm relies on.

Definition 4.2. Let olb(v, τn, τm, r) for a vertex v
be the ball B(v, r) at the time when v first becomes
(τn, τm, r)-light (olbstands for original light ball). Note
that for a (τn, τm, r)-light vertex v we always have
B(v, r) ⊆ olb(v, τn, τm, r), |olb(v, τn, τm, r)| ≤ τn, and
deg(olb(v, τn, τm, r)) ≤ τm.

Proposition 4.1. Given a (τn, τm, r)-light node v, one
can maintain B(v, r) in total update time O(τm · r).

Proof. The proof is a straightforward application of
the ES algorithm. Since B(v, r) is always a subset
of olb(v, τn, τm, r), vertex v only has to maintain
shortest distances up to depth r in the graph induced
by olb(v, τn, τm, r), which by definition has at most τm
edges. By Lemma 2.1 the total update time is O(τm ·r).

The next lemma shows that we can efficiently detect
when a vertex transitions from heavy to light.

Lemma 4.1. There is an algorithm that runs in O(n ·
τm·r) total update time that after each deletion returns a
list of the vertices that were (τn, τm, r)-heavy before the
update and are (τn, τm, r)-light after the update (note
that because we are in a decremental setting, once a node
becomes (τn, τm, r)-light it will always remain so).

Proof. The basic idea is very simple: a vertex v cannot
afford to maintain B(v, r) if this ball contains more than
τm edges, so v will simply truncate the ball the moment
it reaches τm edges. As long as v is forced to truncate
the ball at radius less than r, we know that v must
be must be heavy. The formal proof is slightly more
involved.

The algorithm will maintain for every vertex v the
minimal index i(v) such that the sum of the degrees of
nodes at distance at most i(v) from v is at least τm,
that is, deg({u ∈ V | dist(u, v) ≤ i(v)}) > τm. In
particular, for every vertex v the algorithm constructs
an Even-Shiloach shortest path tree T̃ (v) from v one
level at a time until it reaches the desired level i(v) ≤ r
for which deg({u ∈ V | dist(u, v) ≤ i(v)}) > τm.
(If deg(B(v, r)) ≤ τm then simply set i(v) = r). In
addition, for every edge (x, y) store a list of all trees
T̃ (v) containing the edge (x, y). When the edge (x, y)
is deleted from the graph, the deletion operation is
invoked on all trees T̃ (v) containing the edge (x, y) (this
is done to avoid spending time on trees not containing
the deleted edge). In addition, the algorithm maintains
the sum of the degrees in T̃ (v): this can be easily
maintained by simply storing the sum and once a vertex
leaves T̃ (v) decrease the sum by the degree of that
vertex. If at some point deg(T̃ (v)) < τm and i(v) < r
then increase i(v) by one and add to the Even-Shiloach
tree T̃ (v) all nodes on the next level. Once i(v) = r
and |B(v, r)| ≤ τn and deg(v) ≤ τn/r add v to the list
of (τn, τm, r)-light vertices (note that once i(v) = r the
algorithm maintains B(v, r) and therefore checking if
|B(v, r)| ≤ τn can be done in constant time).

We next bound the total update time of this algo-
rithm. Recall from Lemma 2.1 that in the ES algorithm
the update time comes from two components. Firstly,
we pay O(1) per deletion (we call this the constant com-
ponent). Secondly, as a result of deletions, we must also
pay deg(v) every time the label of v changes (we call
this the label increase component).

We first bound the constant component by showing
that at most O(r ·τm) edges are ever added to any T̃ (v).
This is because at any given time the sum of degrees of
all vertices at depth at most i(v)− 1 is bounded by τm;
thus, when i(v) increases by one, only the O(τm) edges
incident to vertices at level i(v)−1 or below can become
part of the new T̃ (v). Hence, each time i(v) increases,
at most O(τm) new edges can be part of T̃ (v). As i(v)
can increase at most r times, we get that a total of
O(τmr) edges are added to any given tree, and thus at
most O(n · τm · r) over all trees.

We now turn to bounding the total update time
of the label increase component. Consider a vertex v
and T̃ (v). The ES algorithm algorithms does O(deg(u))

460 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

when the label of a vertex u increases: we will charge
this O(deg(u)) work to the level i that was the level of
u before the increase. Notice that this can only happen
when i < i(v) as otherwise when the algorithm finds
that the distance dist(s, u) is larger than i (and so larger
than the threshold i(v) of T̃ (v)), it simply removes u
from the tree and therefore does not pay the addition
O(deg(u)) time. But when i < i(v) we have that the
sum of the degrees up to and including level i is at most
τm. Thus, since each vertex can be charged to level i at
most once, it is not hard to see that the total time spent
for level i is bounded by O(τm). Summing over all levels
we get O(τmr) total update time per tree T̃ (v), leading
to O(n · τm · r) total update time for the algorithm as a
whole.

The following lemma will allow us to reduce the
number of edges in our final hop set.

Lemma 4.2. For every (τn, τm, r)-light vertex v and
parameters τn,τm, and r, there exists an index
rad(v, τn, τm, r) (for convenience, when the parameters
τn, τm, r are clear from the context we write rad(v))
which changes as the main graph G changes and which
has the following properties:

• (1− ε)r ≤ rad(v) ≤ r.

• rad(v) is monotonically decreasing over time.

• |N(v,rad(v))| ≤ τn
ε·r .

• One can maintain rad(v) in total update time
O(τm · r).

Proof. we first note that an index i such that (1− ε)r ≤
i ≤ r and |N(v, i)| ≤ τn

ε·r must exists. To see this,
recall that as v is (τn, τm, r)-light then by definition
|B(v, r)| ≤ τn. In addition, note that there are εr levels
in [(1 − ε)r, r]. By the pigeonhole principle there must
be a level i such that (1− ε)r ≤ i ≤ r and N(v, i) ≤ τn

ε·r .
Initially, we define rad(v) to be the maximal such

index. As long as |N(v,rad(v))| ≤ τn
ε·r we do not modify

rad(v). Once this is not the case we set the new value
of rad(v) to be the maximal index i that is smaller
than the previous rad(v) and such that |N(v, i)| ≤ τn

ε·r .
We need to show that such an index always exists. We
claim that at all times

(4.1) |B(v,rad(v))| ≤ τn − (r − rad(v))
τn
ε · r

.

Note that again by the pigeonhole principle, Equation
4.1 shows that the desired index always exists. We prove
the equation by induction. To prove the base case, note
that |B(v, r)| ≤ τn (because v is light), and that by the
maximality of the initial rad(v) we know that for every

j > rad(v) we have |N(v, j)| > τn
ε·r . Thus for the initial

rad(v) we have

|B(v,rad(v))| = |B(v, r)| −
∑

rad(v)<j≤r

|N(v, j)|

≤ τn − (r − rad(v))
τn
ε · r

.

For a time t let radt(v) be the value of rad(v) at
time t. Similarly, let Bt(v, r

′) (resp. Nt(v, r
′)) for radius

r′ be the set B(v, r′) (resp. N(v, r′)) at time t. To prove
the induction step, assume Equation 4.1 is true up until
some time t − 1 and consider time t. If at time t we
still have |Nt(v,radt−1(v))| ≤ τn

ε·r then rad(v) remains
unchanged, so radt(v) = radt−1(v); Equation 4.1 then
holds by the induction hypothesis, because the right side
of the equation remains the same during time t and t−1
(rad(v) does no change), while the left side can only
decrease because in we are in a decremental setting, so
for any radius r′, |B(v, r′)| is monotonically decreasing.
So assume |Nt(v,radt−1(v))| > τn

ε·r . Because we
choose the new radt(v) to be the maximal desired
index, we have that for all indices radt(v) < j ≤
radt−1(v) we have |Nt(v, j)| > τn

ε·r . Equation 4.1 for
radt(v) then follows from the induction hypothesis and
the fact that |Bt(v,radt(v))| = |Bt(v,radt−1(v))| −∑

radt(v)<j≤radt−1(v)
|N(v, j)|.

We can maintain rad(v) in total update time
O(τm · r) by simply maintaining an ES-tree on B(v, r)
and using a counter to keep track of |Ni(v, r)| for each
i < r. (It is not hard to see that one can tweak the ES
algorithm to do so without increasing the asymptotic
bound on the running time). By Proposition 4.1,
maintaining B(v, r) requires O(τm ·r) total update time.

5 The Threshold Graph

Although the partition into heavy and light vertices is
quite different than in the earlier Bernstein and Chechik
result [4], once we have this partition we construct the
threshold graph in a relatively similar manner, although
with different edge weights and some additional edges.
Note that for the sake of convenience, we contract heavy
components instead of adding a dummy vertex with
edges of weight 1/2 as in [4].

We define the graph Gτn,τm,r as follows. The set
of vertices Vτn,τm,r contains all (τn, τm, r)-light vertices,
as well as vertex c for every connected component C in
the induced subgraph G[heavy(τn, τm, r)]. Note that
because of this contraction, Vτn,τm,r contains different
vertices than V : the following definition allows us to
easily switch between the two.

Definition 5.1. For a vertex v ∈ V , let comp(v) be
the vertex v itself if v is (τn, τm, r)-light or if v is heavy

461 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

then comp(v) is the component vertex c ∈ Vτn,τm,r \
V that is the contraction of the connected component
containing v in G[heavy(τn, τm, r)]. (The parameters
τn, τm, and r will always be clear from context).

The set of edges Eτn,τm,r is defined as follows:

• For every (τn, τm, r)-light vertex v and for all edges
(v, w) in the main graph G, add edge (v, w) if w is
light and edge (v,comp(w)) if w is heavy. Set the
weight of these edges to be εr.

• For every (τn, τm, r)-light vertex v and for all w ∈
N(v,rad(v)) add edge (v, w) if w is light and edge
(v,comp(w)) is w is heavy. Set the weight to these
edges to r.

Note that because of component contraction
Eτn,τm,r may contain parallel edges. For convenience
of notation we assume that s is (τn, τm, r)-light. This
is without loss of generality, since we can always add
a new vertex s′, add a path of length r from s′ to s
and invoke our algorithm from s′. It is not hard to see
that s′ is (τn, τm, r)-light and by subtracting r from the
distances from s′ we can get the distances from s.

We now prove some properties of Gτn,τm,r. The
proofs of the next two lemmas are simple and analogous
to those of Lemmas 4.3 and 4.5 in [4] respectively.

Lemma 5.1. At any given time, the number of edges in
the threshold graph Gτn,τm,r is O(nτnεr).

Proof. Recall that for every (τn, τm, r)-light vertex v,
we add two types of edges to Eτn,τm,r. The first type
is edges incident edges to v in G. By definition of
(τn, τm, r)-light, v has at most O(τn/r) such edges.

The second type are edges between v and all vertices
in N(v,rad(v)). Recall from Lemma 4.2 that there are
at most O(τnεr) vertices in N(v,rad(v)), so every v has
at most O(τnεr) edges of the second type.

There are n vertices, leading to a total of O(nτnεr)
edges.

The previous lemma upper bounds the number of
edges in Gτn,τm,r at any given time. But note that the
total number of edges that are ever added to Gτn,τm,r
throughout the update sequence may be higher, as edges
are deleted and added when rad(v) changes for some
(τn, τm, r)-light vertex v.

Lemma 5.2. The number of edges ever added to the
threshold graph Gτn,τm,r is O(nτn log n).

Proof. Notice that for a (τn, τm, r)-light vertex v, all
edges that we ever add to Gτn,τm,r are one of two
forms: 1) For edges (v, z) where z is also (τn, τm, r)-
light we always have z ∈ olb(v, τn, τm, r); 2) For edges

(v, c) where c corresponds to a heavy component in
G[heavy(τn, τm, r)], we always have that c = comp(z)
for some z ∈ olb(v, τn, τm, r).

The first type of edge is easy to analyze: because
rad(v) only decreases, every edge (v, z) is added at
most once, leading a total of |olb(v, τn, τm, r)| = O(τn)
edges (v, z) that are ever added to Gτn,τm,r

For the second case, we must analyze how we
deal with component vertices c. Consider a heavy
component C in G[heavy(τn, τm, r)], and let c be the
corresponding vertex in Vτn,τm,r. Say that at some
point C splits into two components C1 and C2. Assume
w.l.o.g that |C1| ≤ |C2|. In order to update Gτn,τm,r as
a result of this component split, we do the following:
1. add a new vertex c1 to Gτn,τm,r; 2. for every
z ∈ C1 and every (τn, τm, r)-light vertex v such that
z ∈ N(v, 1) ∪ N(v,rad(v)), remove one copy of edge
(c, v) and add a copy of (c1, v) instead. Note that
all in all, we added and removed deg(C1) number of
edges. Notice also that because are in a decremental
setting components are only splitting apart, and each
time a vertex z is part of the smaller component C1

in a component split, we know that its component has
shrunk by a factor of at least two. Therefore, this may
happen at most O(log n) times for a (τn, τm, r)-heavy
node z, and therefore every z ∈ olb(v, τn, τm, r) leads
to at most O(log(n)) edges (v, c) (where c = comp(z))
being added to Gτn,τm,r.

Summing over all n possibilities for v we get a total
of O(nτn log n) edge insertions into Gτn,τm,r.

The next crucial lemma shows that distances in Gτn,τm,r
are close to distances in G for large distances.

Lemma 5.3. For any positive parameters τn, τm, r, and
any pair of vertices s, t ∈ V :

dist(s, t) < distτn,τm,r(s,comp(t)) +
10rn

τn
+

5rm

τm

.

Proof. The proof is analogous to the proof of Lemma 4.4
from [4], though somewhat more complicated. Recall
from Definition 4.1 that a vertex v can be (τn, τm, r)-
heavy vertex for three reasons. We say that it is
(τn, τm, r)-degree-heavy if |N(v, 1)| > τn/r, (τn, τm, r)-
vertex-heavy if |B(v, r)| > τn and (τn, τm, r)-edge-heavy
if deg(B(v, r)) > τm (note that a vertex may belong to
more than one heaviness type).

We start by giving intuition for the full proof. Note
that edge weights in Gτn,τm,r are actually higher than
those in G, so the only reason distances in Gτn,τm,r
might be shorter is because we contract heavy com-
ponents. The basic idea of the proof is to show that

462 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

contracting heavy components does not significantly re-
duce shortest distances in Gτn,τm,r because we can up-
per bound the number of heavy vertices on any shortest
path π(s, t). 1) There are at most 3rn/τn degree-heavy
vertices on π(s, t). To see this, consider any two degree-
heavy vertices v, w at distance at least 3 on π(s, t). By
definition, |B(v, 1)| ≥ τn/r and |B(w, 1)| ≥ τn/r. But
we also know that B(v, 1) and B(w, 1) are disjoint be-
cause otherwise there would be a v − w path of length
2. Thus, there are are most n

τn/r
= rn

τn
degree- heavy

vertices at distance 3 on πs,t, so 3rn/τn degree-heavy
vertices in total. 2) Similarly, π(s, t) contains at most
3rn/τn vertex-heavy vertices. Consider any two vertex-
heavy vertices v, w at distance at least 3r on π(s, t).
The bound follows from the fact that |B(v, r)| ≥ τn
and |B(w, r)| ≥ τn, but B(v, r) and B(w, r) must be
disjoint. 3) By the same argument, there are at most
3rm/τm edge-heavy vertices on π(s, t).

We now turn to the formal proof. It is a bit more
involved because we have to be wary of the possibility
that there is some near -shortest path with a lot of heavy
vertices. Consider the shortest s − t path π(s, t) ∈ G.
Let πτn,τm,r(s,comp(t)) be the shortest path between
s and comp(t) in Gτn,τm,r. Let Lπτn,τm,r be the set of
(τn, τm, r)-light vertices v ∈ V

⋂
πτn,τm,r(s,comp(t)).

Now, let V ∗ ⊆ V be the set of vertices containing

• All the vertices in Lπτn,τm,r .

• All the (τn, τm, r)-heavy vertices in G.

• All vertices z ∈ N(v, 1) for every (τn, τm, r)-degree-
heavy vertex v

• All vertices z ∈ B(v, r) for every (τn, τm, r)-vertex-
heavy or (τn, τm, r)-edge-heavy vertex v.

Let G∗ be the subgraph of G induced by V ∗. We first
show that there must exist an s − t path in G∗. We
construct this path by looking at πτn,τm,r(s,comp(t)).
πτn,τm,r(s,comp(t)) contains edges between (τn, τm, r)-
light vertices in G∗, as well as edges between a
(τn, τm, r)-light vertex in G∗ and a contracted heavy
component vertex c ∈ Vτn,τm,r \ V . The edges be-
tween two light vertices exist in G∗, so we can fol-
low them directly in π∗(s, t). For every node on
πτn,τm,r(s,comp(t)) that is a contracted heavy compo-
nent c, let v′ and w′ be the two (τn, τm, r)-light neigh-
bors of c on πτn,τm,r(s,comp(t)). (Technical note: if
c = comp(t) then there is no w′ to consider.) There
must exist some v ∈ C that is a neighbor of v′ in G
and some w ∈ C that is a neighbor of w′ in G. Note
that since v and w belong to the same heavy connected
component in G, there is a v − w path in G using only

heavy vertices, so that path is in G∗ as well. We have
thus exhibited an s− t path in G∗.

Now, let π∗(s, t) be the shortest s − t path in G∗.
Let dist∗(s, t) be the length of π∗(s, t). Since G∗ is a
subgraph of G, we know that dist(s, t) ≤ dist∗(s, t).
We now show that
(5.2)

dist∗(s, t) < distτn,τm,r(s,comp(t)) +
10rn

τn
+

5rm

τm

which completes the proof of Lemma 5.3. To prove
Equation 5.2, Let X∗ contain all vertices in π∗(s, t)
that are NOT in Lπτn,τm,r : observe that by definition
of V ∗, every vertex z ∈ X∗ is either (τn, τm, r)-heavy,
or belongs to B(v, r) for some (τn, τm, r)-heavy vertex
v. Let B∗(v, r) and N∗(v, r) be defined analogously to
B(v, r) and N(v, r) for G∗.

Let X∗1 contain all vertices v in π∗(s, t) such that
v is (τn, τm, r)-degree-heavy or v ∈ N(w, 1) for some
(τn, τm, r)-degree-heavy vertex w. Note that for every
vertex x ∈ X∗1 , we have |B∗(x, 2)| ≥ τn/r.

Let X∗2 contain all vertices v in π∗(s, t) such that
v is either (τn, τm, r)-vertex-heavy, or v ∈ B(w, r) for
some (τn, τm, r)-vertex-heavy vertex w. Note that for
every vertex x ∈ X∗2 , we have |B∗(x, 2r)| ≥ τn.

Let X∗3 contain all vertices v in π∗(s, t) such that v
is either (τn, τm, r)-edge-heavy, or v ∈ B(w, r) for some
(τn, τm, r)-edge-heavy vertex w. Note that for every
vertex x ∈ X∗3 , we have deg(B∗(x, 2r)) ≥ τm.

Note that X∗ = X∗1 ∪ X∗2 ∪ X∗3 . Note
also that dist∗(s, t) ≤ |Lπτn,τm,r | + |X∗|, while
distτn,τm,r(s,comp(t)) ≥ |Lπτn,τm,r | because all the
vertices in Lπτn,τm,r are on πτn,τm,r(s,comp(t)). Thus,
to prove Inequality 5.2, it suffices to show that

(5.3) |X∗1 | <
5rn

τn
and |X∗2 | <

5rn

τn
and |X∗3 | <

5rm

τm
.

We start with the first inequality. We define the set
Y ∗1 to contain every 5th vertex in X∗1 , ordered according
to their distance from s: that is, Y ∗1 contains the vertex
in X∗1 that is closest to s on π∗(s, t), the vertex that is
6th closest to s, and so on. Recall that for every vertex
y ∈ Y ∗1 ⊂ X∗1 we have B∗(y, 2) > τn/r. On the other
hand, for any two vertices y and y′ in Y ∗1 , we must
have that B∗(y, 2) and B∗(y′, 2) are disjoint, because
otherwise there would be a path of length 4 between y
and y′ in G∗, which contradicts our only adding every
fifth vertex to Y ∗1 . Thus, |Y ∗1 | < n

τn/r
= rn

τn
, which yields

the desired inequality |X∗1 | ≤ 5|Y ∗1 | < 5rn
τn

.
Similarly, let Y ∗2 contain every (4r + 1)th vertex in

X∗2 : that is, if we order the vertices in X∗2 according to
their distance from s in π∗(s, t), then Y ∗2 contains the
vertices of rank 1, 4r+2, 8r+3 and so on. Recall that for

463 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

every y ∈ Y ∗2 ⊆ X∗2 we have that |B∗(y, 2r)| ≥ τn. On
the other hand, for every two vertices y and y′ in Y ∗2 we
have that B∗(y, 2r) and B∗(y′, 2r) are disjoint, because
otherwise there would be a path of length 4r between y
and y′ in G∗, which contradicts our only adding every
(4r + 1)th vertex to Y ∗2 . Thus, |X∗2 | < 5r|Y ∗2 | < 5rn

τn
.

An analogous proof also yields |X∗3 | < 5mr
τm

.

Maintaining the threshold graph: We now
show how to maintain Gτn,τm,r as the main graph
changes. The details are analogous to those in Lemma
4.5 of [4].

Lemma 5.4. Given a graph G subject to a sequence
of edge deletions, and a positive integers threshold
τn, τm, r, we can maintain the graph Gτn,τm,r in total
time O(m log2(n) + nτnr log n+ nτmr).

Proof. By Lemma 4.1, we can keep track of which
vertices are (τn, τm, r)-heavy and which are (τn, τm, r)-
light in O(n · τm · r) total update time.

By Proposition 4.1, maintaining for every
(τn, τm, r)-light vertex the ball B(v, r)can be done
in total update time O(n · τm · r) (for all vertices).

By Lemma 4.2 we can maintain rad(v) for a
(τn, τm, r)-light vertex v in total update time O(τm · r)
and therefore O(n · τm · r) for all vertices together.

Finally, the algorithm must also maintain the
connected components in G[heavy(τn, τm, r)] and the
set of their incident edges in G. First off, note
that G[heavy(τn, τm, r)] is simply a subgraph of G
and therefore is easy to maintain in O(m) total up-
date time. Maintaining the connected components
in G[heavy(τn, τm, r)] can be done by using a dy-
namic connectivity data structure (CDS) on the graph
G[heavy(τn, τm, r)]. We use the CDS of Holm et al.[15]
for this purpose, which is based on top trees. This CDS
can process insertions and deletions into the graph with
amortized update time of O(log2(n)). It is not hard to
check that the top trees used by their algorithm can
be augmented to support more than just basic connec-
tivity queries. In particular, their CDS can answer the
following queries:

• connected(u,v): determines whether u and v are
in the same connected component in the current
graph. The query time is O(log(n)).

• size(v): returns the size of the connected compo-
nent of v. The query time is O(log(n)).

• component(v): Returns a list of all the vertices
in the same connected component as v. The query
time is O(log(n) + number of vertices returned).

We maintain the above CDS on
G[heavy(τn, τm, r)]. Notice that G[heavy(τn, τm, r)],
like G, is decremental, i.e. it is only subject to edge
deletions. When the adversary deletes an edge (u, v)
in G where both u and v are (τn, τm, r)-heavy, we
delete this this edge from G[heavy(τn, τm, r)] as well,
and this deletion is processed by the CDS in time
O(log2(n)). Similarly, when a vertex v ∈ V transitions
from (τn, τm, r)-heavy to (τn, τm, r)-light, we delete
all its incident edges from G[heavy(τn, τm, r)], and
process each deletion by the CDS. Each edge is deleted
from G[heavy(τn, τm, r)] at most once, so the total
update time of the CDS is O(m log2(n)).

In addition, when a component in
G[heavy(τn, τm, r)] breaks into two connected com-
ponents, the algorithm needs to add another vertex
c′ to Gτn,τm,r to represent the new heavy connected
component. In addition the relevant incident edges to
c′ need to be added to Gτn,τm,r and be removed from
the vertex c of the previous connected component.

Whenever an edge (u, v) ∈ G[heavy(τn, τm, r)] is
deleted, we first query the CDS in O(log(n)) time
to check whether u and v are still part of the same
connected component in G[heavy(τn, τm, r)]; if yes, the
components of G[heavy(τn, τm, r)] do not change, and
we are done. Otherwise, the deletion of (u, v) has
caused the component to split into two. We now query
CDS.size(u) and CDS.size(v) to determine in O(log(n))
time which of the two parts is smaller. say, w.l.o.g,
that CDS.size(v) ≤ CDS.size(u). Let C ′ be the original
component that contained both u and v before the
deletion of (u, v) and let c′ be the vertex that represents
C ′ in Gτn,τm,r. Let Cv be the component containing v
after the deletion. We can use CDS.component(v) to
find all the vertices in Cv in time O(log(n) + |Cv|).
After the deletion, we add a new component vertex
cv to Gτn,τm,r, and for every w ∈ Cv and every edge
(w, z) ∈ E(G) such that z is (τn, τm, r)-light and w ∈
N(z, 1) ∪ N(z,rad(z)), we remove the edge (c, z) and
add the edge (cv, z) instead (if there were multiple copies
of (c, z) then remove only one of these copies).

This takes time O(deg(Cv)) and makes O(deg(Cv))
edge changes to G[heavy(τn, τm, r)]. Amortized over
all edge deletions in Gτn,τm,r we have

∑
deg(Cv) ≤

nτn log(n) because edges in G[heavy(τn, τm, r)] are
only being deleted, so components are only splitting
apart, and each time a vertex w is part of the smaller
component Cv in a component split, we know that its
component has shrunk by a factor of at least two. (The
factor nτn comes from the fact that for every (τn, τm, r)-
light vertex z, every edge (c, z) ∈ Eτn,τm,r corresponds
to an edge (w, z) where w is in olb(z, τn, τm, r), which
has size at most O(τn).)

464 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

6 Maintaining distances on the threshold graph

Our algorithm simply maintains MES(Gτn,τm,r, s, d)
for some depth parameter d defined later. For a vertex

v ∈ V (Gτn,τm,r), let d̂istτn,τm,r(s, v) ≤ d be the
distance label in monotone ES given to v. Note that
when a vertex v transitions from heavy to light, a new
vertex is added to Gτn,τm,r (comp(v) is replaced by v).
Since MES cannot technically handle vertex insertions,
we allow Gτn,τm,r to include a light copy of each vertex
v, even if v is heavy. But as long as v is heavy, the
light copy of v will contain no incident edges and so it
will be completely disconnected from the graph and will
not be touched by the MES algorithm. When vertex
v transitions to a light vertex, we will then add all the
edges in N(v, 1) and N(v,rad(v)) to the light copy of
v, and determine the distance label of v as with regular
edge insertions.

6.1 Analysis of monotone ES We start by bound-
ing the approximation ratio of the estimated distances.

We assume that all labels d̂istτn,τm,r(s, v) ≤ d, since
otherwise v is simply removed from the graph.

In the next lemma we show that
d̂istτn,τm,r(s,comp(v)) ≤ εr · dist(s, v). Note
that even though this seems like a huge stretch,
we are only going to use it for small distances. In
particular if dist(s, v) ≤ r then the lemma implies that

d̂istτn,τm,r(s, v) ≤ εr2.

Lemma 6.1. For every vertex v we have

d̂istτn,τm,r(s,comp(v)) ≤ εr · dist(s, v).

Proof. The proof relies on the simple observation that if
we consider the shortest path π(s, v) ∈ G, then there is a
corresponding path from s to comp(v) in Gτn,τm,r such
that this path in Gτn,τm,r contains the same or fewer
edges than π(s, v) (fewer because heavy components are
contracted in Gτn,τm,r), and such that each edge in the
new path has weight εr.

We prove by induction that after every update the
lemma holds. For the base case, we show that initially

we have d̂istτn,τm,r(s,comp(v)) ≤ εr · dist(s, v). Con-
sider π(s, v) ∈ E and notice that every edge in π(s, v)
that is incident to a (τn, τm, r)-light vertex also exists
in Gτn,τm,r but with weight εr rather than weight of
1. To deal with edges between heavy vertices, consider
any maximal subpath π(x, y) of π(s, v) such that all
vertices on π(x, y) are (τn, τm, r)-heavy. (Maximal in
that neither the vertex before x nor the vertex after y
on π(s, v) are also heavy.) Note that all the vertices
in π(x, y) belong to the same connected component in
G[heavy(τn, τm, r)]. Let c be the vertex in Gτn,τm,r

that represents this connected component. Note that in
Gτn,τm,r we can simply replace the path π(x, y) by the
single vertex c. Consider the vertex x′ that is the neigh-
bor of x in π(s, v) that is closer to s, that is, the neighbor
of x that is not in π(x, y). Note that by the maximality
of π(x, y), x′ is (τn, τm, r)-light and the edge (x′, x) ∈ E
of weight 1 is replaced by the edge (x′, c) ∈ Eτn,τm,r
with weight εr. Similarly, if c 6= comp(v) then let
y′ be the neighbor of y (closet to v) in π(s, v). Then
there is an edge (c, y′) ∈ Eτn,τm,r of weight εr. To
summarize, every edge in π(s, v) that is incident to a
(τn, τm, r)-light vertex is replaced with a matching edge
but with weight εr rather 1 and all other edges are
contracted. Thus for the initial graph, we have that

d̂istτn,τm,r(s,comp(v)) ≤ εr · dist(s, v).
We now turn to the induction step. First induction

hypothesis: assume the lemma holds until the current
update and consider the current update. We prove that
the lemma still holds after the current update by using
a second induction on dist(s, v). For dist(s, v) = 0,
that is v = s, this is clearly the case. Second induction
hypothesis: assume the lemma holds for every vertex u
such that dist(s, u) < ` and consider a vertex v such

that dist(s, v) = `. Let ̂distoldτn,τm,r(s,comp(v)) be the
previous label of comp(v). Let v′ be the closest vertex
to v in π(s, v) such that v is (τn, τm, r)-light. Note that
the edge (v′,comp(v)) exists in Gτn,τm,r with weight εr.
We therefore have

̂distτn,τm,r(s,comp(v)) ≤

max

{
̂distoldτn,τm,r(s,comp(v)), εr + ̂distτn,τm,r(s, v

′)

}
.

By the second induction hypothesis we have

εr + ̂distτn,τm,r(s, v
′) ≤ εr + εrdist(s, v′)

≤ εr + εr(dist(s, v)− 1)

= εrdist(s, v).

In addition, by the first induction hypothesis we

have ̂distoldτn,τm,r(s,comp(v)) ≤ εrdist(s, v). This com-
pletes the proof of the lemma.

Lemma 6.2. For every (τn, τm, r)-light vertex v, we

have d̂istτn,τm,r(s,comp(v)) = d̂istτn,τm,r(s, v) ≤ (1 +
3ε)dist(s, v) + εr2. For every (τn, τm, r)-heavy vertex v

we have d̂istτn,τm,r(s,comp(v)) ≤ (1 + 3ε)dist(s, v) +
εr2 + εr.

Proof. Consider a vertex v ∈ V and consider π(s, v). If
dist(s, v) ≤ r then the claim follows by Lemma 6.1.
So we only need to show the claim for v such that
dist(s, v) > r.

465 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

We first prove that the claim holds in the original
graph. We prove it by induction on dist(s, v). For
the base case, that is s = v, the claim trivially holds.
Assume the claim holds for every u ∈ V such that
dist(s, u) < ` and consider v such that dist(s, v) = `.
Recall that we can assume that dist(s, v) > r. If v is
(τn, τm, r)-heavy then let v′ be the closest (τn, τm, r)-
light vertex to v in π(s, v). Note that dist(s, v′) ≤
dist(s, v) and that the graph Gτn,τm,r contains an
edge (v′,comp(v)) of weight εr. In addition, by the

induction hypothesis, we have d̂istτn,τm,r(s, v
′) ≤ (1 +

3ε)dist(s, v′) + εr2. We therefore have:

d̂istτn,τm,r(s,comp(v))

≤ εr + d̂istτn,τm,r(s, v
′)

≤ εr + (1 + 3ε)dist(s, v′) + εr2

≤ (1 + 3ε)dist(s, v) + εr2 + εr

as required. If v is (τn, τm, r)-light then let v′ be the
vertex in π(s, v) at distance rad(v) from v (see Lemma
4.2); such a vertex is guaranteed to exist because
dist(s, v) > r, and by definition of rad(v) we have that
dist(v′, v) ≤ r(1− ε). Note that v′ might be heavy. By
construction, Gτn,τm,r contains the edge (v,comp(v′))
with weight r. We thus have

d̂istτn,τm,r(s, v)

≤ r + d̂istτn,τm,r(s,comp(v′))

≤ r + (1 + 3ε)dist(s, v′) + εr2 + εr

≤ r + (1 + 3ε)(dist(s, v)− (1− ε)r) + εr2 + εr

≤
(1 + 3ε)dist(s, v) + εr2 +

[r + εr − r(1 + 3ε)(1− ε)]
≤ (1 + 3ε)dist(s, v) + εr2,

where the second inequality follows by induction hy-
pothesis and the last is true for a small enough ε.

First induction hypothesis: assume now that the
lemma is true until the last update and consider the cur-
rent update. We use a second induction on dist(s, v).
For the base case where s = v the claim is trivial.
Second induction hypothesis: assume the claim is cor-
rect for all vertices u such that dist(s, u) < ` and
consider a vertex v such that dist(s, v) = `. Recall
that if dist(s, v) ≤ r the correctness follows by Lemma
6.1. So assume dist(s, v) > r. If v is (τn, τm, r)-
light then there is some vertex v′ ∈ π(s, v) at distance
rad(v) from v. Note that dist(s, v′) ≤ dist(s, v), that
dist(v′, v) ≥ (1−ε)r, and that by construction Gτn,τm,r
contains the edge (v,comp(v′)) with weight r. Let

̂distoldτn,τm,r(s, v) be the previous distance label of v. We
have

(6.4)

̂distτn,τm,r(s, v) ≤

max{ ̂distoldτn,τm,r(s, v),

̂distτn,τm,r(s,comp(v′)) + r}

By the first induction hypothesis we assume

̂distoldτn,τm,r(s, v) ≤ (1 + 3ε)dist(s, v) + εr2.

By the second induction hypothesis we have: (note the
extra additive error because v′ might be heavy)

̂distτn,τm,r(s,comp(v′)) ≤ (1 + 3ε)dist(s, v′) + εr2 + εr.

Using the same analysis as in the base case for the first
induction hypothesis, we can show that

̂distτn,τm,r(s,comp(v′)) + r ≤ (1 + 3ε)dist(s, v) + εr2.

It follows that ̂distτn,τm,r(s, v) ≤ (1+3ε)dist(s, v)+εr2,
as required. Note that the exact same argument holds
if v transitioned from heavy to light in the current
update, as in this case the current update inserts all
the edges that are associated with new light vertex v
(namely, all the edge in N(v, 1) and N(v,rad(v)), so in
particular there will still be a v′ on π(s, v) at distance
rad(v) from v, and an edge (comp(v′), v) ∈ Eτn,τm,r.
Also, if v transitioned from heavy to light, then the
light copy of v was previously disconnected from the
graph, so this will be the first time v receives a distance

label, so there is no ̂distoldτn,τm,r(s, v) and we simply have

̂distτn,τm,r(s, v) ≤ ̂distτn,τm,r(s,comp(v′)) + r.
Consider now the case where v is (τn, τm, r)-heavy.

Let w be the (τn, τm, r)-light vertex closest to v on

π(s, v). Let ̂distoldτn,τm,r(s,comp(v)) be the previous
distance label of comp(v). We know that

̂distτn,τm,r(s,comp(v)) ≤

max

{
̂distoldτn,τm,r(s,comp(v)), εr + ̂distτn,τm,r(s, w)

}
.

By the first induction hypothesis we have

̂distoldτn,τm,r(s,comp(v)) ≤ (1 + 3ε)dist(s, v) + εr2 + εr.

By the second induction hypothesis:

̂distτn,τm,r(s, w) ≤ (1 + 3ε)dist(s, w) + εr2.

Thus we have that ̂distτn,τm,r(s, v) ≤ (1+3ε)dist(s, v)+
εr2 + εr, as required.

466 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

Corollary 6.1. For every vertex v ∈ V if (1 +
2ε)dist(s, v) ≤ d − r2 − εr then MES(Gτn,τm,r, s, d)
contains comp(v) (i.e. comp(v) is not removed for
having label greater than d).

Finally, we bound the total update time of the
algorithm.

Lemma 6.3. The total update time of
MES(Gτn,τm,r, s, d) is O(dnτnεr2 + nτn log n).

Proof. We show a dynamic assignment from the set of
edges Eτn,τm,r to Vτn,τm,r with maximum load O(τn/r)
(see Definition 2.5). For every (τn, τm, r)-light vertex
v assign the set of edges {(v, z) | z ∈ N(v,rad(v)) ∪
N(v, 1)} to v. (If an edge ends up assigned to both of
its endpoints, choose one arbitrarily). By definition of
light vertices and rad(v), the assignment load of each
vertex is always O(τn/r). By Lemma 5.2 the number
of edges ever added to the threshold graph Gτn,τm,r is
O(nτn log n). We maintain the MES up to depth d and
recall that the weights in Gτn,τm,r are multiplies of εr.
Applying Corollary 2.1 then concludes the lemma.

7 Putting it all together

We now turn to proving Theorem 1.1. Let dmin =
n1.25

ε1.25
√
m

. To handle distances dist(s, v) ≤ dmin, we will

run ES(G, s, dmin), which by Lemma 2.1 requires total
update time O(mdmin) = O(n1.25

√
m/ε1.25). To han-

dle distances larger than dmin, we will run MES on
O(log(n)) different threshold graphs Gτn,τm,r, each cor-
responding to a possible distance interval for dist(s, v).
We will then argue that for any possible value of
dist(s, v) > dmin, one of these threshold graphs yields
a good approximation to dist(s, v).

More formally, Let I = [1, dlog(n)/ log dmine]. For

every integer i ∈ I, let di = 2i · dmin, ri =
d
1/3
i ·n

1/3

ε1/3·m1/3 ,

rmin =
d
1/3
min·n

1/3

ε1/3·m1/3 , τ in = ri·n
ε·di and τ im = ri·m

ε·di .
Our algorithm maintains for every integer i ∈ I,

the graph Gτ in,τ im,ri and runs MES(Gτ in,τ im,ri , s, di). In
addition, the algorithm runs ES(G, s, dmin).

For every vertex v let

d̂isti(v) = d̂istτ in,τ im,ri(s,comp(v)) and let

d̂ist(v) = min{bounddmin(dist(s, v)),

min
i
{d̂isti(v) +

10rin

τ in
+

5rim

τ im
}}.

When the adversary queries the distance to a vertex

v, our algorithm returns d̂ist(v). In short, the total
update time follows from Lemma 5.4 (maintaining the

various Gτ in,τ im,ri) and Lemma 6.3 (running MES in the

threshold graphs); the fact that dist(s, v) ≤ d̂ist(v)

follows from Lemma 5.3; the fact that d̂ist(v) ≤ (1 +
O(ε))dist(s, v) follows from Lemma 6.2.

We now analyze the algorithm more formally. The
execution of the algorithm is simple. By Lemmas 5.4

and 6.3 for any i we can maintain d̂isti(v) for all vertices
v in total update time O(m log2(n) + nτ inri log n +

nτ imri +
dinτ in
εr2 +nτ in log n) = O(m log2(n) + n2ri

2 logn
εdi

+
n·mri2
εdi

+ n2

ε2ri
). Plugging in ri, we get the total update

time is:

O(m log2(n) +
n5/3m1/3

ε5/3d
1/3
i

+
n8/3 log n

ε5/3m2/3d
1/3
i

).

Plugging in di = dmin2i, we get total update time
of:

O(m log2(n) +
n5/4m1/2

ε5/4(2i)1/3
+

n9/4 log n

m1/2ε5/4(2i)1/3
)

= O(
n5/4m1/2

ε5/4(2i)1/3
+

n9/4 log n

m1/2ε5/4(2i)1/3
).

Summing over all i’s we get that the total update
time for all indices is∑

i

O(
n5/4m1/2

ε5/4(2i)1/3
+

n9/4 log n

m1/2ε5/4(2i)1/3
)

=
n5/4m1/2

ε5/4
+
n9/4 log n

m1/2ε5/4
·
∑
i

O(1/(2i)1/3)

= O(
n5/4m1/2

ε5/4
+
n9/4 log n

m1/2ε5/4
).

In addition, the total update time for maintaining
Even-Shiloach ES(G, s, dmin) is O(m · dmin) = O(m ·
dmin) = O(n

5/4m1/2

ε5/4
).

To maintain all the d̂ist(v), for each vertex v we

create a min-heap heapv containing d̂isti(v) for every

i. The algorithm can access any d̂ist(v) in O(1) time
by looking at the minimum of the heap, thus leading
to an O(1) query time. Maintaining the heaps is

easy: each d̂isti(v) can change at most O(dmin2
i

riε
) times

(because all edge weights in the corresponding threshold
graph are multiples of εri), so there will be at most∑
iO(dmin2

i

riε
) = n

εrmin
changes to each heapv, and since

each heap contain O(log n) elements, a change requires
O(log log n) time to process. Maintaining heapv for all

v thus requires total update time only O(n
2 log logn
εrmin

) =

O(n
5/4m1/2 log logn

ε1/4
).

All in all, the total update time of our algorithm is

O(n
5/4m1/2

ε5/4
log log n+ n9/4 logn

m1/2ε5/4
) = O(n

5/4m1/2

ε5/4
log n).

467 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

We now turn to proving that for any vertex v,

dist(s, v) ≤ d̂ist(s, v) ≤ (1 + O(ε))dist(s, v). The fact

that dist(s, v) ≤ d̂ist(s, v) follows directly from Lemma
5.3, because for every i

dist(s, v) ≤ distτi(s, v) +
10n

rτ in
+ +

5m

rτ im
.

We now turn to the second direction. If dist(s, v) ≤
dmin then ES(G, s, dmin) returns the correct value for

dist(s, v) , so clearly d̂ist(s, v) ≤ dist(s, v). So assume
from now that dist(s, v) > dmin.

To prove that d̂ist(s, v) ≤ (1 + O(ε))dist(s, v), we

need to show that for some i, we have d̂isti(s, v) +
10rin
τn

+ 5rim
τm
≤ (1 +O(ε))dist(s, v).

Let k be the index such that dmin2k−2 ≤
dist(s, v) ≤ dmin2k−1.

Straightforward calculations show that:

(7.5)
10rin

τ in
+

5rim

τ im
= 15εdi.

Straightforward calculations also show that r2i < di.
Note that dist(s, v) ≤ dmin2k−1, so we have that (1 +
2ε)dist(s, v) + εr2i + εri ≤ dmin2k for a small enough ε.
Hence, by Corollary 6.1 MES(Gτkn ,τkm,rk , s, dk) contains
comp(v), i.e. comp(v) is not removed due to having
label greater than d. In addition by Lemma 6.2 we have

d̂isti(s, v) +
10rin

τn
+

5rim

τm

≤ d̂istτkn ,τkm,rk(s,comp(v)) +
10rkn

τn
+

5rkm

τm

≤ (1 + 3ε)dist(s, v) + εr2k + εrk + 15εdk

≤ (1 + 3ε)dist(s, v) + εdk + εdk + 15εdk

≤ (1 +O(ε))dist(s, v).

8 Conclusions

There are two main open problems for deterministic par-
tially dynamic SSSP. The first is whether we can im-
prove upon our Õ(n1.25

√
m) = Õ(mn3/4) total update

time. Is it possible to match the randomized state of
the art of O(m1+o(1))? We believe that perfecting our
techniques (especially reducing the number of edges in
the threshold graph) could potentially lead to total up-
date time Õ(m

√
n), but that going beyond this would

require a new set of techniques. The second question is
whether there are deterministic algorithms with o(mn)
total update time for weighted and/or directed graphs
(such results are not known even for dense graphs).

References

[1] Ittai Abraham, Shiri Chechik, and Cyril Gavoille.
Fully dynamic approximate distance oracles for planar
graphs via forbidden-set distance labels. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory
of Computing (STOC), pages 1199–1218, 2012.

[2] Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully
dynamic all-pairs shortest paths: Breaking the o(n)
barrier. In International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems
(APPROX), pages 1–16, 2014.

[3] Aaron Bernstein. Fully dynamic (2 + epsilon) approx-
imate all-pairs shortest paths with fast query and close
to linear update time. In Proceedings of the 50th An-
nual IEEE Symposium on Foundations of Computer
Science, FOCS, pages 693–702, 2009.

[4] Aaron Bernstein and Shiri Chechik. Deterministic
decremental single source shortest paths: beyond the
o(mn) bound. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing (STOC), pages
389–397, 2016.

[5] Aaron Bernstein and Liam Roditty. Improved dy-
namic algorithms for maintaining approximate shortest
paths under deletions. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1355–1365, 2011.

[6] Camil Demetrescu and Giuseppe F. Italiano. A new
approach to dynamic all pairs shortest paths. J. ACM,
51(6):968–992, 2004.

[7] Yefim Dinitz. Dinitz’ algorithm: The original version
and even’s version. In Theoretical Computer Science,
Essays in Memory of Shimon Even, pages 218–240,
2006.

[8] Shimon Even and Yossi Shiloach. An on-line edge-
deletion problem. Journal of the ACM, 28(1):1–4,
1981.

[9] Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. Decremental single-source
shortest paths on undirected graphs in near-linear
total update time. In Proceedings of the 55th Annual
Symposium on Foundations of Computer Science,
FOCS, pages 146–155, 2014.

[10] Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. Sublinear-time decremental
algorithms for single-source reachability and shortest
paths on directed graphs. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing
(STOC), pages 674–683, 2014.

[11] Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. A subquadratic-time algorithm
for decremental single-source shortest paths. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages
1053–1072, 2014.

[12] Monika Henzinger, Sebastian Krinninger, and
Danupon Nanongkai. Improved algorithms for decre-
mental single-source reachability on directed graphs.
In Proceedings of the 42nd International Colloquium,
ICALP, pages 725–736, 2015.

468 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

[13] Monika Henzinger, Sebastian Krinninger, Danupon
Nanongkai, and Thatchaphol Saranurak. Unifying and
strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In Pro-
ceedings of the Forty-Seventh Annual ACM on Sympo-
sium on Theory of Computing (STOC), pages 21–30,
2015.

[14] Monika Rauch Henzinger and Valerie King. Main-
taining minimum spanning forests in dynamic graphs.
SIAM J. Comput., 31(2):364–374, 2001.

[15] Jacob Holm, Kristian de Lichtenberg, and Mikkel
Thorup. Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree,
2-edge, and biconnectivity. J. ACM, 48(4):723–760,
2001.

[16] Valerie King. Fully dynamic algorithms for maintain-
ing all-pairs shortest paths and transitive closure in di-
graphs. In Proceedings of the 40th Annual Symposium
on Foundations of Computer Science, FOCS, pages 81–
91, 1999.

[17] Aleksander Madry. Faster approximation schemes for
fractional multicommodity flow problems via dynamic
graph algorithms. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages
121–130, 2010.

[18] Liam Roditty and Uri Zwick. On dynamic shortest
paths problems. Algorithmica, 61(2):389–401, 2011.

469 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

