ASU CARTA Capabilities

Ming Zhao, Associate Professor, ASU Site Director
School of Computing and Augmented Intelligence
Web: https://carta.asu.edu, Email: carta@asu.edu
Interdisciplinary Faculty Team

Computer Science & Engineering
Dr. Ming Zhao
Dr. Fengbo Ren
Dr. Chris Bryan
Dr. Jia Zou

Industrial Engineering
Dr. Feng Ju
Dr. Hao Yan

Software Engineering
Dr. Srividya Bansal
Acceleration & Heterogeneous Computing

- Heterogeneous infrastructure
 - Hardware accelerators (400 CPUs, 32 GPUs, 32 FPGAs)
 - Memory technologies (1TB DRAMs, 8TB persistent memories)
 - High-speed network (100Gb/s InfiniBand)

- Heterogenous computing
 - FPGA designs for accelerating deep neural networks & multidisciplinary applications (medicine, transportation)
 - Cross-platform computing using OpenCL
Real-time Edge Computing

- IoT and edge computing infrastructure
 - 150 Raspberry Pis, NVIDIA edge GPUs, Coral edge TPUs, Intel NUCs, Amazon DeepRacers, SparkFun JetBots
 - 50 Intel cloudlet nodes
 - Robotics lab
 - Manufacturing lab

- Real-time IoT-data-driven learning & analytics
 - Distributed machine learning
 - Machine learning model compression
Research Themes

• High-performance Computing
• Visual Analytics
• Deep Learning
• Real-time Data Analytics
• Data Fusion & Integration
• Smart Manufacturing
Heterogeneous High-performance Computing
Dr. Zhao & Dr. Ren

Research Objective
- Enable portability
- Enable scalability
- For both existing & future accelerators

Key Innovation
- Hardware-agnostic accelerator orchestration
- Compute-centric MPI

Broader Impact
- Effortless adoption of accelerators by domain experts

High Potential Sponsor

[Diagram showing various clusters and nodes, including CPU, FPGA, TPU, and GPU accelerators, with dynamic kernel/binary deploy for accelerator programming.]
Distributed Deep Learning
Dr. Ming Zhao

Research Objective
• Accurate, efficient, and responsive learning for IoT data driven applications

Key Innovation
• Policy-based automatic model customization
• Cross-edge-cloud collaborative learning

Broader Impact
• Support for diverse data-driven, learning-based applications and heterogeneous deployment platforms

High Potential Sponsor

Responsive/customized/private learning on the edge
Visual Analytics for Complex Data
Dr. Chris Bryan

Research Objective
• Designing novel visualizations and interfaces to supporting analysis of complex data

Key Innovation
• “Human-in-the-loop” processes combine human reasoning with data-driven models

Broader Impact
• Tools and techniques are widely applicable across a variety of data domains and problems

High Potential Sponsor

Visualizing how anomaly events egocentrically propagate from a source location through the electric power grid network
Real-time Deep Learning Inferences from Relational Databases
Dr. Jia Zou

Research Objective
- To provide fast, low-cost, and scalable deep learning inference from relational databases

Key Innovation
- Automatic Tensor-Relational Translation
- Co-optimization of data serving and DNN model serving in one system

Broader Impact
- Reduce inference latency and costs for a broad class of AI + database applications

Current Sponsor
- IBM

We are in contact with more potential sponsors

Use cases: Smart transaction processing on relational data

Existing approach: High latency, low resource utilization, high cost

Proposed approach: 10x lower latency and 4x better resource utilization, significantly lower cost

Input features
- RDBMS
- TensorFlow/Pytorch

Inference results

```sql
IF (fraud-model1.infer(features(transaction-id)) IS FALSE):
  Update ACCOUNT SET bal = bal - amount
  WHERE ID = id1
  Update ACCOUNT SET bal = bal + amount
  WHERE ID = id2
```

Use cases
- Smart transaction processing on relational data

Existing approach
- High latency, low resource utilization, high cost

Proposed approach
- 10x lower latency and 4x better resource utilization, significantly lower cost
Thank you!

http://carta.asu.edu
Email: carta@asu.edu