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Interdisciplinary Faculty Team

Computer Science & Industrial Software
Engineering Engineering Engineering

Dr. Feng Ju Dr. Hao Yan Dr. Srividya Bansal
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Acceleration & Heterogeneous
Computing

« Heterogeneous infrastructure
— Hardware accelerators (400 CPUs, 32 GPUs, 32 FPGAS)
— Memory technologies (1TB DRAMs, 8TB persistent memories)
— High-speed network (100Gb/s InfiniBand)

« Heterogenous computing

— FPGA designs for accelerating deep
neural networks & multidisciplinary
applications (medicine, transportation)

— Cross-platform computing using
OpenCL




Real-time Edge Computing

* |oT and edge computing infrastructure

— 150 Raspberry Pis, NVIDIA edge GPUs, Coral edge TPUs, Intel NUCs,
Amazon DeepRacers, SparkFun JetBots

— 50 Intel cloudlet nodes
— Robotics lab
— Manufacturing lab

« Real-time loT-data-driven learning & analytics
— Distributed machine learning
— Machine learning model compression
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Research Themes

* High-performance Computing
* Visual Analytics

* Deep Learning

* Real-time Data Analytics

« Data Fusion & Integration

« Smart Manufacturing



Heterogeneous High-performance Computing
Dr. Zhao & Dr. Ren

Research Objective Key Innovation

e Hardware-agnostic

e Enable portability
e Enable scalability

e For both existing &
future accelerators

Broader Impact

e Effortless adoption of
accelerators by
domain experts
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Distributed Deep Learning
Dr. Ming Zhao

Research Objective Key Innovation

- : : Deep learning on cloud

e Accurate, efficient, and e Policy-based automatic o P resour%es &
responsive learning for model customization jpusssRsamRaERssE s n s
loT data driven e Cross-edge-cloud

applications collaborative learning

Broader Impact High Potential Sponsor

e Support for diverse
data-driven, learning- u
based applications and aWS InteL
heterogeneous
deployment platforms

Responsive/customized/private learning on the edge



Visual Analytics for Complex Data
Dr. Chris Bryan

Research Objective Key Innovation
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e Designing novel e “Human-in-the-loop”
visualizations and processes combine
interfaces to supporting human reasoning with . R
analysis of complex data-driven models | —_—
data

Broader Impact High Potential Sponsor

e Tools and techniques

N
are widely applicable h‘ Adobe -.f"

across a variety of data B\!%T i
domains and problems Uber —

Visualizing how anomaly events egocentrically propagate from a
source location through the electric power grid network




Real-time Deep Learning Inferences from

Relational Databases
Dr. Jia Zou

Research

Objective Key Innovation

« Automatic Tensor-
Relational Translation

» Co-optimization of data
serving and DNN model
serving in one system

* To provide fast, low-cost,
and scalable deep
learning inference from
relational databases

Use cases: Smart
transaction processing
on relational data

Existing approach:
High latency, low
resource utilization,
high cost

IF (fraud-modell.infer(features(transaction-id)) IS
FALSE):
Update ACCOUNT SET bal=bal-amount
WHERE ID=id1
Update ACCOUNT SET bal =
WHERE ID=id2

bal + amount

Input features

N

TensorFlow
()
RDBMS /Pytorch

N

Proposed approach: 10x lower Inference results

latency and 4x better resource
utilization, significantly lower cost
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Thank you!

http://carta.asu.edu
Email: carta@asu.edu
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