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Multidisciplinary Team

e 17 PhD Students
e CBIM: 13 Faculty members

* Collaborations with Pls from major
Universities, Hospitals and Companies



Al/ML Research

Explainable Al
Federated Learning
Generative Al

Large Language and Multimodal
Foundation Models

Multimodal Data Fusion

Graph Neural Nets

Semi and Unsupervised Learning
Diffusion Methods

Domain knowledge incorporation
for improved inference

Real time solutions

Application Domains

* Biomedical Applications

Cardiac, Cancer, Joints

K-space MRI Reconstruction
Histopathology

Spatial Biology and Multi-omics
Explainable Solutions

* Computer Vision

Segmentation, Registration, 3D
object reconstruction, motion
analytics

Explainable shape, motion analytics

Shape and motion generation with
relationships



Biomedical Projects



Explainable Medical Inference
Aligning Medical Knowledge to Data

a) Current deep learning based diagnosis b) Human expert diagnosis

L A — Asymmetry: asymmetrical and irregular contours.

Border: uneven edges that looks blurry, not making
by a clean line around the spot.
q‘ Color: mixture of black, brown, and blue, indicating =» Melanoma

varying depths of melanin deposition.
End-to-end Diameter: larger in diameter than benign moles.
Prediction

Asymmetry: high degree of bilateral symmetry.
Border: smooth, well defined margins that are

r —p distinct from surrounding tissue. Melanocytic
_ LR Color:uniform pigmentation of tan or brown, — Nevus
W" consistent with benign melanocytic proliferation.
A Blackbox Neural Network Diameter: small in diameter

c) Explicd: Explainable language-informed criteria-based diagnosis
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diagnose skin lesion from dermoscopic images
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encapsulated within the ABCDE rule, help to

identify skin lesion types, including asymmetry,
border, color, diameter, evolving. Input Image
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Prompt: please describe the typical features
for the ABCDE rule of each class

LLM/Human Experts: melanoma exhibits
asymmetry: ..; border: ..; color: ..;
diameter: .., melanocytic nevus shows: ...;
basal cell carcinoma ......

“smooth, well defined...” “larger..."
“uneven edges...” iniform pigment “small...”

Gather and catalog these criteria of each class
as knowledge anchors




Histopathology Nuclei Segmentation Challenges

1.Data Annotation 2.Model Architecture 3.Loss Function

- Laborious time
- Domain knowledge required - Image details lost due to pooling

- Pixel-level cross entropy is limited
- There is a lack of spatial constraint

4 U U

We proposed a series of novel deep-learning approaches to address the multiple challenges of nuclei
segmentation



Weakly Supervised Nuclei Segmentation

* Extension: select 5% representative hard nuclei to annotate masks
e Better than points and random selection

(c¢) Points [73] (d) Mixed (rand) (e) Mixed (un)



Improving Nuclei Segmentation: FullNet &
varCE loss

* More accurate boundaries help separate touching nuclei
NN

groundtruth FCN-pooling FullNet FullNet & varCE



nature.com/articles/s41698-021-00225-9

Explore content v  About the journal v  Publish with us v

precision oncology

nature > npj precision oncology > articles > article

Article ] Open Access ] Published: 23 September 2021

Genetic mutation and biological pathway prediction
based on whole slide images in breast carcinoma using
deep learning

Hui Qu, Mu Zhou, Zhennan Yan, He Wang, Vinod K. Rustgi, Shaoting Zhang &, Olivier Gevaert &J & Dimitris

N. Metaxas

npj Precision Oncology 5, Article number: 87 (2021) | Cite this article

2609 Accesses | 1 Citations | 4 Altmetric | Metrics



Gene Mutation and Pathway Prediction

e Goal: predict mutation and pathway activity from whole slide images

(WSlIs) directly

WSls

Labels

TCGA

The Cancer Genome Atlas

10,000 Tumors
* 33 Cancer Types

Clinical Data
Copy Number
Exome/Mutation
DNA Methylation
mRNA-Seq
microRNA-Seq
RPPA Protein
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Colon Cancer Histopathology and Its Key Mutations

=

Aberrant crypt foci Adenoma Carcinoma

Intestinal epithelial cell T

APC KRAS

1

From Left to Right: Early to late Cancer Stage
Goal:
We seek to build image-based graph and identify detectable evidence for cancer molecular outcomes
with therapy implications

11
Kexin Ding, etc. MICCAI 2020.



Results Visualization

(b)

Region colors correspond to results from each
subgraph model to the right.
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(d) Top -10 |dent|f|ed tlles from subgraph model 2 (within red reglon)
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(e)Top 10 |dent|f|ed tlles from subgraph model 3 (wuthm blue reglon) |

! ‘ (c) Top 10 |dent|f|ed tlles from subgraph model 1 (wuthm purple regklon)
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(g)) Top -10 identified tlles from subgraph model 5 (W|th|n yellow reglon)

Statistics of
subgraphs

Number of node| Node degree Clustering Closeness Betweenness
coefficient centrality centrality
1000 915.4283 0.9400 0.9177 0.0001

(h)




Federated Few-Shot Learning with Dual
Knowledge Distillation on Medical Imaging

Method: Distill both feature-based and response-basec

Motivation: Sporadic Distributed Data, Limited
knowledge from teacher network

Annotations, Heterogeneous Data Distribution

Images from

local dataset

e High resolution training images from cohort study )\ ( Teacher Unsupervised Data_\

o A ] s Dual knowledge distillation loss

gl & \ Network :

" ' \ 1N R ; . II 'II ‘
\_ e L / & 5] Yy, — } Feature-based distillation loss .
Server (1. Distribute Client ) \
. teacher model . . 2. Local trainin
b —

| / : Supervised Data
Supervised loss
Teacher 3. Collect | H H

student model l I ﬁ[||:|
— Student < )
= Network
Student ~ 5 Distribute Low resolution support K o Segmentation from Labels from/

student network  local dataset

4. Aggregate | (student model images from local client




Morphology-Guided Diffusion Model for 3D
Volume Reconstruction

e’ RN RS . Motivation: Improve spatial and temporal

(a) Limitation of clinical cardiac cMRI data'

resolution of 4D MRI.

Method: Utilize features from
reconstruction and label to condition on
the diffusion process.

End Diastolic End Systolic End Diastolic

Find Latent Variables Interpolatlon Image Generation
W Q
9 .
& . i

sem

WED

Diffusion-based
Generation Process

Reconstructed

Original SAX
Images x

Dense Reconstructed Cardiac Model
Images

Cardiac Morphology Encoder €mor L mor DCaptured Image  Missing Image| 'Reconstructed Images



Promoting for All-In-One MRI reconstruction

Conventional CNN-based MRI reconstruction models often require training and deployment

for each specific imaging scenario (imaging sequence, view, and device vendor), limiting their
clinical application in the real world, we tackle this challenge via prompt-based learning for all-
in-one MRI reconstruction.
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input-type adaptive ‘
visual prompt ”
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Integrating Deep Learning with Physics-based Deformable Models

LV Endo

LV Epi

RV

Before Registration MR-Net NMF Ours-un Ours

(a) Input (b) TDAC (c) DeFormer (d) Target

Shape Registration Segmentation



Computer Vision
Generative/Multimodal Al
Explainable Al
Projects



Score-Guided Diffusion for 3D Human Recovery

Solving inverse problems for 3D human pose and shape reconstruction with
score guidance in the latent space of a diffusion model.

Repeat until aligned with observations

l n Xt /At steps n Xt /At steps |
................................................. : :‘, A - {)
= N D
2 . c r
—_— o . —_— —> €6 —» —» —_— i — ¢ —i—> ‘ L
2 R
& a @ ' 4
a DDIM Inversion Guided Sampling J Q
B : .

Input Im : I
Guidance

) P Observation
/\ Iterative B

\ } refinement y

(a) Joints reprojection (b) Cross-view consistency (c) Temporal consistency

Addltlonal ViEWS <

_—>
2D keypoints

Consolidated mesh



Social ODE: Multi-agent Trajectory Forecasting with Neural Ordinary
Differential Equations

Method: Model an agent’s trajectory spatial and temporal dimensions explicitly:

1. Model the temporal dimensions using Neural ODEs to learn continuous temporal
dynamics

2. Model agent interactions using three variables: distance, agent interaction intensity,
and agent aggressiveness.

Trajectory forecasting:




Second-Order Graph ODEs for Multi-Agent Trajectory Forecasting

Method:

1. Incorporate distance and velocity information to model agent interactions by
constructing dynamic interaction graphs in real-world space.

2. Model continuous temporal dynamics using second-order ODEs, following
Newton’s Second Law.

Avoid obstacle Near-miss forecasting




Diffusion Models for Sigh Language Video Anonymization
Diffusion Model, Text-to-video, Video Editing, Video Anonymization, ASL

Our research introduces DiffSLVA, a novel Text-guided ASL Anonymization

methodology that uses pre-trained large-scale

diffusion models for text-guided sign language

video anonymization.

(A) We incorporate ControlNet, which leverages
low-level image features such as HED edges,

to circumvent the need for pose estimation.

(B) Cross-Frame Attention Control and Optical
Flow Based Guidance is applied for
consistency in video editing.

(C) A specialized module based on motion
estimation is developed to transfer
linguistically essential facial expressions.




Sign Language Video Anonymization

Image Animation, Motion Transferring, Video Editing, Video Anonymization, ASL

D=1 D=2 D=3 D=4 D=5 D=6
We propose to transfer a signer’s identity to Driving Frames ‘
another signer based on the image animation
model using a source frame and driving frames
from ASL videos. Our contributions are:
(A) The Asymmetric Image Generator: An
encoder-decoder structured network with a High-
Resolution Generation (HRG) module for high
guality and low computation cost image
generation.

Source Frames

S=2

(B) Multiscale perceptual loss based on VGG-16

& Hand & Face Focused Loss: Computed between s
the high-resolution generated and driving frames,

to improve face & hand generation.




Exploiting Unlabeled Data with Vision and
Language Models for Object Detection

Open vocabulary object detection, vision and language models, pseudo label

generation
, . (Unlabeled D
' Pseudo Label Generation nia ] .ate%

V&L models Proposal |
generators

Task Specific
Category Space

4 N\
Downstream Tasks

Training
—> | Open Vocabulary Semi-Supervised |
Object Detection Object Detection

\, J/

Existing labeled

datasets




Generating Enhanced Negatives for Training
Language-Based Object Detectors

Open vocabulary object detection, multi-modal learning, large language
model, data augmentation

in a dress walking across [ 0ilil0S

Existing work Our work

B ina ¢ in a dress

Z dress walking Z walking across a bridge Text2Img
=% =%

Car parked on the < Woman in a dress
street 2 walking across a beach
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Negative image
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Show me what and tell me how

Video synthesis via multimodal conditioning

-----------------------------------------------------------------------------

----------------------------------------------------------------------------------------------
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SVDiff: Compact Parameter Space for
Diffusion Fine-Tuning

Parameter-efficient fine-tuning method for GenAl
models (e.g. text-to- |mage diffusion)

Ak Multe-
v Subjeot

Siwg Le-
image
Editing

shape A + style®  shape ® + style A Input Image
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ProxEdit: Improving Tuning-Free Real Image
Editing with Proximal Guidance

Tuning-free closed-form diffusion-based optimization for image
editing

Null-Text Negative-Prompt
Inversion \ Inversion

Input Image

AR =
R\ =

Prompt: “a eat tiger sitting next to a mirror”

Inversion time: f{h\ 130s O A Ss 0 A Ss



Self-Training for Open-Vocabulary Object Detection

Open vocabulary object detection, vision and language models, self-

training

R 3 rr '::"‘l'ﬂ"a
roundrutUes

iy

Class Loss for
Open-Branch

g

Ground Truth of Base Concepts

v

v

Class Loss for
Closed-Branch

I

Box Loss for
Closed-Branch

)

7Y

]

Encoder

J

Legend:

Module

[ Loss Term ]

Embedding

¥ Frozen

f Image Input

QLI
Image

3

Region Proposals
S from Frozen RPN

udy [0y
v

VS

PeSH A

e (- ™
(a) Base Concepts (b)
=
Bird

> Inference - Gac - y| BaseText | .

JESCheRr — — — — — — > . = Embedding | |

Thresholding o || = ;

T | - ) __g ? 1

~ [ Bus - el | Open Text :

05:~ : Cat | Embedding :

T

i Periodic Update !

5 | Open Concepts Open Concepts ~ [==—===-- e A !
o
2
=
w2

P[ Class Loss ]

.................

P{ Class Loss ]

E Classifier

Box predictor

P[ Box Loss ]

__________________

J




LEPARD: Learning Explicit Part Discovery for 3D
Articulated Shape Reconstruction (NeurIPS 2023)

* To generalize to scenarios where 3D annotations are not available, we

» Illustrate the relationship of kinematics between 3D and 2D via projective geometry.

» Project the primitives onto the image space and calculate the discrepancy between
the projected primitives and 2D evidence.

» Convert the image forces to their corresponding generalized forces that guide the
deformation of the primitives.

» Use deep features from DINO-VIiT as supervision to train our model.



Results — Consistency Visualization

LEPARD Input LASSIE LEPARD
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Deep Physics-based Deformable Models

Topic: 3D Scene Understanding and Object Shape Abstractions
Applications:

el AR

AAOAA
ic() .Oel

%f%;ww

Shape Reconstruction Scene Understanding Novel-view
Synthesis/Editing
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