
Providing Meaningful Feedback for Autograding of
Programming Assignments

Georgiana Haldeman
Rutgers University

mgh80@cs.rutgers.edu

Andrew Tjang
Rutgers University

atjang@cs.rutgers.edu

Monica Babeş-Vroman
Rutgers University

babes@cs.rutgers.com

Stephen Bartos
Rutgers University

scb167@scarletmail.rutgers.edu

Jay Shah
Rutgers University

js2279@scarletmail.rutgers.edu

Danielle Yucht
Rutgers University

dry11@scarletmail.rutgers.edu

Thu D. Nguyen
Rutgers University

tdnguyen@cs.rutgers.edu

ABSTRACT
Autograding systems are increasingly being deployed to meet the
challenge of teaching programming at scale. We propose a method-
ology for extending autograders to provide meaningful feedback
for incorrect programs. Our methodology starts with the instructor
identifying the concepts and skills important to each programming
assignment, designing the assignment, and designing a comprehen-
sive test suite. Tests are then applied to code submissions to learn
classes of common errors and produce classifiers to automatically
categorize errors in future submissions. The instructor maps the
errors to concepts and skills and writes hints to help students find
their misconceptions and mistakes. We have applied the methodol-
ogy to two assignments from our Introduction to Computer Science
course. We used submissions from one semester of the class to
build classifiers and write hints for observed common errors. We
manually validated the automatic error categorization and potential
usefulness of the hints using submissions from a second semester.
We found that the hints given for erroneous submissions should
be helpful for 96% or more of the cases. Based on these promising
results, we have deployed our hints and are currently collecting
submissions and feedback from students and instructors.

KEYWORDS
Autograding, concepts/skills-based hints, error categorization
ACM Reference format:
Georgiana Haldeman, Andrew Tjang, Monica Babeş-Vroman, Stephen Bar-
tos, Jay Shah, Danielle Yucht, and Thu D. Nguyen. 2018. Providing Meaning-
ful Feedback for Autograding of Programming Assignments. In Proceedings
of SIGCSE ’18: The 49th ACM Technical Symposium on Computing Science
Education, Baltimore , MD, USA, February 21–24, 2018 (SIGCSE ’18), 6 pages.
https://doi.org/10.1145/3159450.3159502

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159502

1 INTRODUCTION
The current demand for computing professionals is unprecedented,
with a short supply in the US, and the gap between demand and
supply is predicted to increase even more in the next few years [13].
Correspondingly, universities are seeing tremendous enrollment
growths in computing classes and are faced with the challenge of
teaching programming at scale [4].

According to Ambrose et al., "goal-directed practice coupled with
targeted feedback are critical to learning" [1]. Programming assign-
ments are the tools of choice for providing students with hands-
on practice in many computing classes. However, as autograding
systems are deployed to scale the grading of programming assign-
ments in increasingly large classes, providing meaningful feedback
remains an open problem. Many deployed autograding systems do
not provide feedback. Even when feedback is available, the feedback
provided does not assist students in correcting errors [10] and does
not address underlying misconceptions. A recent work seeks to ad-
dress these issues using a hybrid approach that combines program
synthesis and instructor code review and feedback generation [7].

In this paper, we propose a methodology that is similar in spirit
to the approach in [7], but focuses on linking errors to concepts and
skills central to a programming assignment and does not depend
on compilation tools. Rather, our approach depends on collecting
and analyzing assignment submissions to generate hints that can
be used in future semesters.1 More specifically, when designing an
assignment, we propose that the instructor explicitly define the set
of concepts and skills, called the knowledge map, that students need
to master to complete the assignment. After the assignment has
been written, a comprehensive test suite should be developed with
the goal of teasing out misunderstandings of the knowledge map
along with correctness testing for grading.

Next, the assignment is released and student submissions are
collected. The instructor runs the test suite against the submissions
and manually inspects sets of submissions with the same outcome
patterns (called signatures) to identify errors, refining the test suite
as needed or desired. Finally, the instructor maps the errors to
specific items in the knowledge map and generates hints to guide

1Supporting the evolution of assignments while still making use of collected data is
an important extension that we intend to explore in the near future.

https://doi.org/10.1145/3159450.3159502
https://doi.org/10.1145/3159450.3159502

the students toward reviewing and improving their understanding
and mastery of the applicable concepts and skills. The observed
signatures can be used to produce a classifier that automatically
categorize future erroneous submissions, allowing the autograding
system to provide the corresponding hints as meaningful feedback.

The above methodology encapsulates two key ideas: (1) the in-
spection of a set of submissions with the same signatures for a
comprehensive, well designed suite of tests can help the instructor
identify high-level logical errors, and (2) the mapping of errors to
concepts and skills in the knowledge map can aid in the generation
of hints that direct students to conceptually reconsider their code,
rather than making local, code specific suggestions that can lead to
highly convoluted solutions (e.g., many unnecessary nested condi-
tional statements). Understanding common errors in light of the
knowledge map can also aid the instructor in adjusting classroom
teaching in the current and future offerings of the course.

We applied our proposed methodology to two assignments in our
Introduction to Computer Science course. We collected large num-
bers of submissions for the two assignments across two semesters,
Spring 2016 and Spring 2017. We designed test suites for the as-
signments and used submissions from Spring 2016 to learn classes
of common errors, produce classifiers for automatic error catego-
rization of future submissions, and write hints. We then used the
classifiers to attach hints to erroneous submissions from Spring
2017. Four of the authors manually reviewed the results of this
experiment, and found that over 91% and over 87% of the hints
for the two assignments, respectively, fully captured the errors in
the corresponding submissions. These percentages rise to over 96%
when we count hints that partially captured the errors. Based on
these promising results, we have deployed the error categorization
and corresponding hints for the two assignments in the Fall 2017
semester, and are currently collecting submissions and feedback
from students and instructors.

2 RELATEDWORK
Our work explores the extension of autograding systems to provide
feedback to students. Web-CAT [5] and Autolab [12] are two auto-
grading tools that we have used in our Introduction to Computer
Science course. Web-CAT includes a library that allows a hint to be
attached to each test case. When a submission fails a test, the asso-
ciated hint is returned as feedback. In our experience, it is difficult
to balance between writing hints that are overly specific and overly
vague based on the result of one test case. Thus, our approach uses
the results from an entire test suite for identifying common errors
and providing hints.

One research effort for automated grading has focused on defin-
ing a problem-independent grammar of features, and by using a
supervised learning algorithm trained on teacher graded examples
to assign grades to new student submissions [18]. This work is
related but focuses on grading rather than providing feedback.

Commonly, the generation of feedback is a two step process:
first, the code is assessed to identify mistakes or bad practices;
then, appropriate feedback is generated based on the assessment
from the first step. Methods for assessing students’ code are unit
testing, stylistic checking [10], property-based testing [2], execu-
tion traces [14], and program synthesis [19]. Automated generation

of feedback often relies on the assumption that students in large
classes share common errors [6]. Student submissions are clustered
based on failed test cases, compiler errors or runtime exceptions
[6], stylistic checking [17], AST tree edit distance [9], probabilistic
semantic equivalence [15] or program synthesis [3]. Our categoriza-
tion approach is based on testing and manual review of submitted
code.

Providing personalized feedback in Intelligent Tutoring Systems
(ITS) is done by using rule-based and constraint-based methods
[8]. However, this approach does not scale well for assignments
that have multiple solutions (classes 2 and 3 in [11]). Data-driven
procedures improve existing methods. One approach [16], for ex-
ample, uses the AST distance to guide students from an erroneous
submission to a correct solution. Their work is complementary
to our work. Another recent effort focuses on designing a system
that propagates the feedback of the teacher on one submission to
the rest of the submissions that need the same code fixes by using
program synthesis [7]. We already discussed how our system is
different in Section 1.

3 CONCEPT AND SKILLS BASED FEEDBACK
GENERATION FRAMEWORK (CSF2)

We propose the Concepts and Skills based Feedback Generation
Framework (CSF2) for designing programming assignments based
on the concepts and skills that students are required to master, and
analyzing submissions with respect to these concepts and skills to
generate hints for assisting students in correcting their errors. The
approach is described as a sequence of steps, but the ordering can
be modified as discussed in Section 6. The proposed steps are as
follows.

Step 1 Carefully consider the knowledge map (concepts and skills)
that students need to master to complete the assignment.

Step 2 Write the assignment with the knowledge map in mind.
Step 3 Design a test suite to assess student submissions. Full path

coverage of a reference solution is typically a good start (but
will need expansion). Each test should output a code repre-
senting the outcome when it is run against a submission.

Step 4 Release the assignment and collect student submissions.
Step 5 Automatically run the test suite against the collected sub-

missions and group submissions into buckets based on the
outcome signatures, where a signature is the concatenation
of the codes output by all the tests in the test suite. Each
signature may indicate one or more logical errors. Our hy-
pothesis is that submissions with the same signatures are
likely to have similar logical errors.

Step 6 Manually inspect each bucket of submissions to see whether
subsets of submissions have different logical errors. If yes,
then refine the test suite to separate these subsets into differ-
ent buckets. The knowledge map may also need to be refined
(for example, to include a concept that has to be mastered
for the assignment but was accidentally omitted in Step 1).

Step 7 Repeat Step 5 and Step 6 as needed.
Step 8 Map the errors identified for each bucket to concepts and

skills in the knowledge map. Then, manually inspect and
combine buckets of submissions with the same errors or

knowledge deficiencies. Our hypothesis is that mapping er-
rors to the knowledge map will help instructors reduce the
number of hints that need to be written, as well as write hints
that provide conceptual guidance rather than very specific
coding changes.

Step 9 Write a hint for each bucket. The outcome of Step 8 and Step
9 is a classifier, manually trained on past student submissions,
that maps the outcome signature of a well designed test suite
to meaningful hints.

Step 10 When the assignment is run again, the autograding system
can use the classifier to automatically categorize errors and
provide hints for submissions that fail one or more tests.

While the work in this paper is focused on generating mean-
ingful autograding feedback, the above process is also useful in
gaining a better understanding of students’ errors and misconcep-
tions. The instructor can use this information to improve the quality
of classroom teaching, for example, in identifying concepts and
skills that should be reinforced, as well as adjusting the teaching of
the concepts and skills in the future.

As described above, CSF2 is most useful when an assignment
is reused over multiple offerings of a class, with previous submis-
sions being used to generate and improve hints for subsequent uses
of the assignment. Currently, CSF2 does not directly support the
evolution of an assignment (for example, changes to the assign-
ment to circumvent cheating or to improve the assignment) across
time (although we have successfully experimented with changing
TwoSmallest to an isomorphic assignment while still making use of
analysis results from previous submissions; see Section 6). This is
an important challenge that we plan to address in the future.

Finally, while the manual inspection of assignments is labor
intensive, it is possible to get help from advanced undergraduate
students when CSF2 is applied to early computing classes. We have
successfully done this with our case studies: three of the authors
are undergraduate students who helped with exactly this task.

4 CASE STUDIES
In this section, we describe the application of CSF2 to two pro-
gramming assignments in the Introduction to Computer Science
course at Rutgers University. Even though CSF2 proposes that an
instructor starts with a knowledge map when designing an assign-
ment, our case studies work with existing assignments because
we already collected a large number of student submissions across
several semesters. In essence, we reversed the ordering of Steps 1
and 2 in CSF2, and extracted the knowledge maps from the existing
assignments.

Steps 1 and 2: Extracting the Knowledge Maps
We studied two assignments, PayFriend, a class 2 assignment ac-
cording to [11], which means that it has one solution strategy with
multiple possible implementations, and TwoSmallest, a class 3 as-
signment, which means that it has multiple solution strategies.
PayFriend asks the students to compute the fee associated with
making an e-payment when given a tiered fee structure, with differ-
ent fees for four payment ranges, requiring a good understanding
of conditional statements. TwoSmallest asks the students to read a
sequence of floating point values that starts and ends with a sentinel

Table 1: Number of students and assignment submissions.

Spring 2016 Spring 2017
Number of students 511 437
PayFriend Submissions 1152 723
TwoSmallest Submissions 1339 870

value and output the two smallest values in the sequence, requiring
algorithmic thinking and understanding of initialization and loops
(in addition to conditional statements).

Each assignment requires the solution to be implemented inside
a method with a prescribed method signature. Students are also
asked to submit code in a specific format, including predefined file
and class names and to omit all package and import statements.
Failure to follow all instructions results in compilation errors and
zero credit.

When we started this research, PayFriend and TwoSmallest had
already been designed and used several times. We worked with
the lead instructor to determine the knowledge maps he had in
mind when designing them. Some of the concepts and skills in the
knowledge maps are shown in the right column of Table 2 below.

Step 3: Designing the Test Suites
Wedeveloped a reference solution for each assignment and designed
13 test cases for PayFriend and 20 for TwoSmallest that led to a full
path coverage of the reference solutions. Next, we considered more
challenging inputs, especially for novice programmers. For example,
it is well known that many programming bugs involve the handling
of boundary cases. Thus, for PayFriend, we designed test cases with
input values close to the tier boundaries, as well as values from
the middle of the tiers. This test design process was iterative (as
discussed in Steps 5–7 of CSF2). After all refinements were made,
PayFriend’s test suite contained 20 test cases and TwoSmallest’s
contained 30. In previous offerings of the assignments, PayFriend
and TwoSmallest were graded using 10 and 7 test cases, respectively.

Step 4: Collecting Student Submissions
We collected student submissions for the two assignments during
the Spring 2016 semester using Web-CAT [5] and during the Spring
2017 semester using Autolab [12]. Table 1 shows the number of
students and submissions collected for each assignment during the
two semesters. Each submission included anonymized student in-
formation, a time stamp, and code. In this study, we only looked at
the submitted code; all submissions were anonymized by removing
all information, including comments, other than the actual code.
The submissions from Spring 2016 were used for Steps 5–8 of CSF2.
The submissions from Spring 2017 were used to evaluate our ability
to correctly identify the most important errors associated with in-
correct submissions, with the ultimate goal of providing meaningful
hints. This was a partial evaluation of the effectiveness of Step 10.

Steps 5–7: Refining Tests and Partitioning
Submissions
We generated a test outcome signature for each submission by
running the test suite developed in Step 3 against the submitted
code. Then, submissions with the same signature were grouped in

Table 2: Mapping of common errors to concepts and skills in
the knowledge map.

Code Error Concept / Skill
Both assignments

COMP compilation errors writing compilable
code

INS errors regarding the required
format, e.g., incorrect filename

following instructions

IO IO errors, e.g., wrong numbers
or types of inputs/outputs

data representation /
following instructions

INF used infinite loops control flow
PayFriend

CF output only in some branches control flow
COND used incorrect conditional

statements
translating word prob-
lems into conditional
statements

FORM used incorrect calculation in-
side a range

translating word prob-
lems into formulas

TwoSmallest
SEQ read and processed incorrectly

a sequence of values
data representation /
following instructions

INIT wrongly initialized min values algorithmic thinking
UPDT wrongly updated min values algorithmic thinking

the same bucket. Each signature could indicate one or more logical
problems. A bucket could be mapped to two or more independent
errors with their own associated hints, but all the submissions in the
same bucket needed to have the same errors so that a meaningful
corresponding hint could be generated. If, for a given bucket, some
of the submissions had one error while others had a different error,
we refined the test suite to obtain a better partitioning.

We manually inspected the students’ code in each bucket to
identify the main reason for the code failing one or more tests. For
buckets containing submissions with different knowledge deficien-
cies, we refined or extended our test suite to further partition the
buckets. We iterated through Steps 5–7 once for PayFriend and
several times, making small refinements each time, for TwoSmallest.
We found that iterations with small refinements were easier to
think about. By the end of the process, we added 7 additional test
cases for PayFriend and 10 for TwoSmallest. The final test suites led
to 109 non-empty buckets for PayFriend (using 20 tests) and 137
non-empty buckets for TwoSmallest (using 30 tests).

Steps 8 and 9: Combining Buckets and
Generating Hints
Next, we manually mapped the main reason for code failure in each
bucket to a deficiency in a concept or skill as shown in Table 2.
As already mentioned, we found that many of the buckets were
different manifestations of similar knowledge deficiencies. Thus,
we grouped many of the buckets together, leading to 8 “super-
buckets” for PayFriend and 7 for TwoSmallest (Table 3). Clustering
student submissions for assignments in class 2 and 3 is a particularly
challenging task because the solution space can be large. Since unit
testing mostly focuses on the functionality of the code rather than

the style, we were able to cluster stylistically different student
submissions with the same logical error.

Finally, we wrote a hint for each bucket, and the hints have been
deployed in Autolab for the Fall 2017 semester. We are still in the
process of collecting data, including student feedback, to assess the
impact of our hints on student learning.

5 RESULTS
In this section, we present the most relevant findings from our case
studies. We first assess the accuracy of the automatic error catego-
rization of submissions and whether the hints capture these errors.
Then, we show examples of common errors and corresponding
hints. We discuss how the outputs of the test suites help identify
logical errors and how the knowledge maps help produce hints on
a more conceptual level. We have improved some of the hints (over
the ones deployed for Fall 2017) in the process of writing this paper,
although we did not fundamentally change any of the hints.

5.1 Accuracy of Error Categorization and Hints
As described in Section 4, we used our test suites and submissions
from Spring 2016 to manually generate an error classifier for each
of PayFriend and TwoSmallest. We also wrote hints to be given as
feedback from the autograder. We then used the same test suites,
classifiers, and hints to identify, categorize, and attach a hint to
each erroneous submission from Spring 2017.

Three of the authors manually reviewed the Spring 2017 submis-
sions to assess the accuracy of the classifier and potential efficacy
of the corresponding hints. These authors are currently enrolled in
the undergraduate Computer Science program at Rutgers, and have
previously taken the Introduction to Computer Science course. We
believe that having done the assignments themselves while taking
the course gave them a good perspective in this evaluation. Their
task was to label each (erroneous submission, hint) pair as Correct,
Partially Correct, or Incorrect. Correct meant that the automatic di-
agnosis and corresponding hint fully captured the logical errors in
the submission, and so would potentially provide useful guidance
to the student. Note that we say “potentially” since the labeling was
done by people other than the owners of the submissions. Possibly
Correct meant that the diagnosis and hint only partially captured
the errors in the submission. Incorrect meant that the errors were
misdiagnosed and so the hint was misleading. Each submission was
inspected and evaluated by at least two authors. The results were
analyzed by a fourth author to resolve conflicts.

Table 3 presents the results. Examination of Incorrect cases for
both assignments revealed errors that would be difficult to detect
with black box testing. Thus, improving accuracy would likely re-
quire the use of additional complementary or more powerful meth-
ods for assessment (for example, compiler analysis techniques).

We conclude that the automatic error categorization and corre-
sponding hints are appropriate for the vast majority of the erro-
neous submissions, and so we have deployed them in the Fall 2017
semester.

5.2 Examples of Common Errors and Hints
Example 1. For PayFriend, common errors include incorrect condi-
tional expressions leading to incorrect answers for boundary values,

Table 3: Accuracy of error categorization and hints for
Spring 2017 submissions. Each row presents statistics for a
bucket of submissions with the same errors.

Error Automatic Partially
Codes Categorization Correct Correct

PayFriend
COMP 34 34 100% 0 0%
INS 111 111 100% 0 0%
IO 119 114 95.8% 3 2.5%
INF 7 4 57.1% 3 42.9%
CF 38 26 68.4% 4 10.5%
COND 44 39 88.6% 4 9.1%
COND, FORM 91 82 90.1% 9 9.9%
FORM 83 72 86.7% 4 4.8%
Total 527 482 91.5% 27 5.1%

TwoSmallest
COMP 39 39 100% 0 0%
INS 105 104 99% 1 1%
SEQ 51 47 92.2% 4 7.8%
INIT 67 56 91.8% 5 8.2%
UPDT 158 129 87.2% 19 12.8%
SEQ, INIT 157 137 91.9% 12 8.1%
SEQ, UPDT 176 145 85.8% 24 14.2%
Total 767 671 87.5% 65 8.5%

and incorrect formulas for one or more fee tiers leading to incorrect
answers for entire tiers. It is useful to differentiate between the
two errors when giving students hints. We were able to make this
distinction using the combined outputs of multiple tests.

More specifically, if a submission fails test cases with input values
inside one tier, I, but passes test cases with input values in other
tiers, it is likely that the code does not correctly calculate the fee
for tier I. This signature leads to the following hint for tier ($100
to $1000): “It seems that you are not correctly calculating the fee for
payments in the range (100, 1000). Review the assignment instructions,
check that your formula for computing the fee is correct, then follow
the steps used in the calculation of the fee in your code and make sure
that they implement the correct formula.”

On the other hand, if the submission passes test cases with in-
put values inside I, but fails test cases with inputs near the upper
or lower boundaries of I, it is likely that the code uses incorrect
conditional expressions. This may arise from misunderstandings
of conditional statements and expressions, and/or misunderstand-
ings of the assignment write-up, hence the mapping to the skill
translating word problems into conditional statements. For exam-
ple, discriminating between ≥ and > in a conditional expression
requires understanding of boundary values and how they differ
among data types. For integers, x < 100 is equivalent to x ≤ 99, but
this is not true for real values. We thus wrote the following hint: “It
seems that you did not split the input intervals correctly, where some
values at the boundary between intervals may have been included
under the wrong formula/rule; that is, your conditional expressions
may be incorrect, for example you may have ≥ 101 instead of > 100
which are not equivalent expressions for double values.”

Example 2. For TwoSmallest, given the material that has been
taught in class, most students develop algorithms that have two
major steps: (1) initialize two variables used to hold the two smallest
values, and (2) read the input sequence and update the variables.
Many students make the algorithmic error of not considering what
the initial values of the variables should be, and often initialize
them to inappropriate values such as 0. Comparing the results of
several test cases with input values that are positive, negative, and
mixed can tell us whether or not a submission has this error. Also,
the mapping of this error to algorithmic thinking in the knowledge
map reminds us to view the error in light of the student’s algo-
rithmic design effort. This leads to the hint: “It seems that you did
not initialize the variables used to hold the minimum and second-
Minimum to reasonable values. Think about how the starting values
would affect your algorithm for finding the two smallest values. In
particular, what would happen if the input values in the sequence
were greater, equal or less than the starting values for your minimum
and secondMinimum.”

Updating the two variables in TwoSmallest requires algorithmic
thinking, and can be a challenge for students new to program-
ming. Many students tend to think about the update process in
fragmented, poorly coordinated pieces. To assess if the update of
the variables is done correctly, we test input sequences that are per-
mutations of two and three numbers. If the submitted code passes
all the test cases with a valid input of size two but fails the test
cases where the third value is less than the minimum value, then
it is highly likely that the student is not updating the minimum
value correctly. The mapping of the error to “algorithmic thinking”
again leads us to write a hint designed to steer students toward
developing this skill: “It seems that you did not update the variables
holding the minimum and/or secondMinimum values correctly. Think
carefully about the algorithm that you are developing to update your
variables. It may help to think about what would happen if the se-
quence had the same number appearing multiple times; for example,
all possible permutations of 3 numbers with repetition.”

6 DISCUSSION
CSF2 is designed to be flexible enough to serve the needs of many
programming courses that use autograding. It can assist instructors
in various tasks from creating assignments, to reviewing course
material, to encouraging interactions between students through
discussion of the hints. In this section, we discuss possible modifi-
cations to CSF2 and the use of the knowledge map.

6.1 Modifications to the Framework
The process described in Section 3 is meant to be a guideline for
best practices. As written, it describes a top-down approach to the
design of assignments using knowledge maps. The advantage of
this approach is that assignments are carefully and systematically
written to target specific course material. However, in practice and
as we see in our case studies, instructors have their assignments
already written and have already used them over the course of a
few semesters. In these situations, a “bottom-up” approach can be
used with a few advantages: previously collected submissions can
be used to guide the extraction of the knowledge map, design or
improve the test suite, and generate the error classifiers and hints.

Much of the manual work done for this research is labor inten-
sive. While we have manually reviewed all 527 and 767 erroneous
submissions for PayFriend and TwoSmallest in this work, it may be
that reviewing only a sample of submissions would be sufficient.
We are currently exploring the use of random subsets of various
sizes to gauge the sensitivity of the error categorization and hint
generation on sample size.

6.2 Using the Knowledge Map
One advantage of using a knowledge map and a classifier is the abil-
ity to query which concepts and skills students are struggling with,
similar to the results shown in Tables 2 and 3. With this knowledge,
instructors can devise specific interventions targeting knowledge
deficiencies that can be deployed prior to the administration of
the assignment. Some of these proposed interventions may include
additional exercises, textbook references, and/or video lessons.

Instructors can also take advantage of the knowledge map when
assigning partial credit to autograded assignments. Traditionally,
grading rules have been very rigid, following the boundaries of
unit testing and leading to a linearly scaled grade based on the
percentage of passed test cases. Relying on test cases alone to grade
submissions resulted in some unexpected behaviors. Instructors
at our university reported that students at either end of the scor-
ing spectrum (that is, those who received no credit and those who
earned nearly full credit despite still having important miscon-
ceptions and mistakes), gave up working on and completing their
programming assignments. With our proposed knowledge map,
instructors can assign scores based on the importance they allot to
each concept or skill. For example, for PayFriend we weighted all
the tested concepts starting with compilation and ending with con-
ditional statements. Students who understood the assignment but
previously would have received low grades due to failed test cases,
were more fairly assigned scores that reflected their understanding
of the problem and its solution using the knowledge map. Con-
versely, we found submissions that previously would have received
near perfect scores since they only failed a few tests. The weighted
knowledge map scoring lowered their scores because these test
failures showed misunderstandings of core concepts, serving as a
motivation for the students to improve their solutions.

Finally, the knowledge map and buckets of common errors can
aid in the generation of isomorphic assignments while reusing the
error classifier and hints. For example, in Fall 2017, we modified
TwoSmallest into TwoLargest, where the students were asked to
output the two largest values in a sequence. In this instance, we
were able to reuse the test suite, classifier, and hints with only small
changes. This can be a starting point for extending CSF2 to support
the evolution of assignments over time (for example, to circumvent
cheating) while reusing classifiers and hints.

7 CONCLUSIONS
In this paper, we presented a methodology which bridges the gap
between autograding and the knowledge assessment of program-
ming assignments to provide meaningful feedback to students. Our
methodology asks the instructor to systematically analyze program-
ming assignments with respect to knowledge maps to ensure course
cohesion between the specific challenges posed to students by the

programming assignments and the material taught in class. The
methodology also outlines an approach for finding common errors
in a set of submissions for an assignment, and generating an er-
ror classifier and hints that can be used by an autograder to give
feedback for future submissions. This process can also give instruc-
tors insight on how to adjust class material to address observed
knowledge deficiencies. We have applied our methodology to two
assignments in our introductory course, and found that the hints
should provide useful feedback for the vast majority of incorrect
submissions.

Acknowledgement.Thisworkwas partially supported by aGoogle
Computer Science Capacity Award.

REFERENCES
[1] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K. Norman. How

Learning Works: Seven Research-based Principles for Smart Teaching. Jossey-Bass,
2010.

[2] C. Benac Earle, L. A. Fredlund, and J. Hughes. Automatic Grading of Program-
ming Exercises Using Property-Based Testing. In Proceedings of the 2016 ITiCSE
Conference, 2016.

[3] S. Bhatia and R. Singh. Automated Correction for Syntax Errors in Programming
Assignments using Recurrent Neural Networks. CoRR, 2016.

[4] Computing Research Association. Generation CS: Computer Science Undergrad-
uate Enrollments Surge Since 2006. https://cra.org/data/Generation-CS/.

[5] S. H. Edwards and M. A. Perez-Quinones. Web-CAT: Automatically Grading
Programming Assignments. In ACM SIGCSE Bulletin, volume 40, 2008.

[6] E. L. Glassman, A. Lin, C. J. Cai, and R. C. Miller. Learnersourcing Personalized
Hints. In Proceedings of the 2016 CSCW Conference, 2016.

[7] A. Head, E. Glassman, G. Soares, R. Suzuki, L. Figueredo, L. D’Antoni, and B. Hart-
mann. Writing Reusable Code Feedback at Scale with Mixed-Initiative Program
Synthesis. In Proceedings of the 2017 Conference on Learning @ Scale. ACM, 2017.

[8] J. Holland, A. Mitrovic, and B. Martin. J-LATTE: a Constraint-based Tutor for
Java. In The 2009 International Conference on Computers in Education, 2009.

[9] J. Huang, C. Piech, A. Nguyen, and L. Guibas. Syntactic and Functional Variability
of a Million Code Submissions in a Machine Learning MOOC. In Proceedings of
the 2013 Workshop on Massive Open Online Courses at the 16th Annual Conference
on Artificial Intelligence in Education, 2013.

[10] H. Keuning, J. Jeuring, and B. Heeren. Towards a Systematic Review of Automated
Feedback Generation for Programming Exercises. In Proceedings of the 2016
Conference on Innovation and Technology in Computer Science Education, 2016.

[11] N.-T. Le and N. Pinkwart. Towards a Classification for Programming Exercises. In
Proceedings of the 2nd Workshop on AI-supported Education for Computer Science,
2014.

[12] D. Milojicic. Autograding in the Cloud: Interview with David O’Hallaron. IEEE
Internet Computing, 2011.

[13] National Center for Women & Information Technology. Projected Computing
Jobs and CIS Degrees Earned. http://www.ncwit.org/sites/default/files/file_type/
usnatgraphic2022projections_10132014.pdf.

[14] B. Paaßen, J. Jensen, and B. Hammer. Execution Traces as a Powerful Data
Representation for Intelligent Tutoring Systems for Programming. In Proceedings
of the 2016 International Conference on Educational Data Mining. International
Educational Datamining Society, 2016.

[15] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and L. J. Guibas.
Learning Program Embeddings to Propagate Feedback on Student Code. CoRR,
2015.

[16] K. Rivers and K. R. Koedinger. Data-Driven Hint Generation in Vast Solution
Spaces: A Self-Improving Python Programming Tutor. International Journal of
Artificial Intelligence in Education, 27, 2017.

[17] S. Rogers, D. Garcia, J. F. Canny, S. Tang, and D. Kang. ACES: Automatic Evalua-
tion of Coding Style. Master’s thesis, EECS Department, University of California,
Berkeley, May 2014.

[18] G. Singh, S. Srikant, and V. Aggarwal. Question Independent Grading Using
Machine Learning: The Case of Computer Program Grading. In Proceedings of the
2016 SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016.

[19] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for
introductory programming assignments. SIGPLAN Not., 48(6), 2013.

	Abstract
	1 Introduction
	2 Related work
	3 Concept and Skills based Feedback Generation Framework (CSF2)
	4 Case Studies
	5 Results
	5.1 Accuracy of Error Categorization and Hints
	5.2 Examples of Common Errors and Hints

	6 Discussion
	6.1 Modifications to the Framework
	6.2 Using the Knowledge Map

	7 Conclusions
	References

