
Uncertainty Propagation in Data Processing Systems
Ioannis Manousakis
Microsoft Corporation

iomanous@microsoft.com

Íñigo Goiri, Ricardo Bianchini
Microsoft Research

{inigog,ricardob}@microsoft.com

Sandro Rigo
University of Campinas
sandro@ic.unicamp.br

Thu D. Nguyen
Rutgers University

tdnguyen@cs.rutgers.edu

ABSTRACT
We are seeing an explosion of uncertain data—i.e., data that is more
properly represented by probability distributions or estimated val-
ues with error bounds rather than exact values—from sensors in IoT,
sampling-based approximate computations and machine learning
algorithms. In many cases, performing computations on uncertain
data as if it were exact leads to incorrect results. Unfortunately,
developing applications for processing uncertain data is a major
challenge from both the mathematical and performance perspec-
tives. This paper proposes and evaluates an approach for tackling
this challenge in DAG-based data processing systems. We present a
framework for uncertainty propagation (UP) that allows developers
to modify precise implementations of DAG nodes to process un-
certain inputs with modest effort. We implement this framework
in a system called UP-MapReduce, and use it to modify ten ap-
plications, including AI/ML, image processing and trend analysis
applications to process uncertain data. Our evaluation shows that
UP-MapReduce propagates uncertainties with high accuracy and,
in many cases, low performance overheads. For example, a social
network trend analysis application that combines data sampling
with UP can reduce execution time by 2.3x when the user can tol-
erate a maximum relative error of 5% in the final answer. These
results demonstrate that our UP framework presents a compelling
approach for handling uncertain data in DAG processing.

CCS CONCEPTS
• Computer systems organization → Architectures;

KEYWORDS
Uncertainty Propagation, DAG Data Processing

ACM Reference Format:
Ioannis Manousakis, Íñigo Goiri, Ricardo Bianchini, Sandro Rigo, and Thu
D. Nguyen. 2018. Uncertainty Propagation in Data Processing Systems. In
Proceedings of ACM Symposium on Cloud Computing, Carlsbad, CA, USA,
October 11–13, 2018 (SoCC ’18), 12 pages.
https://doi.org/10.1145/3267809.3267833

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267833

1 INTRODUCTION
Data is being produced and collected at a tremendous pace. The
need to process this vast amount of data has led to the design
and deployment of data processing systems such as MapReduce,
Spark and Scope [7, 32, 37]. These frameworks typically allow data
processing applications to be expressed as directed acyclic graphs
(DAGs) of side-effect free computation nodes, with data flowing
through the edges for processing. The frameworks then run appli-
cations on clusters of servers, transparently handling issues such
as task scheduling, data movement, and fault tolerance.

At the same time, there is an urgent need for processing an
exploding body of data with uncertainties [4]. For example, data col-
lected using sensors are always estimates that have uncertainties—
the differences between the estimated and true values—due to sen-
sor inaccuracies. Data uncertainties also arise in many other con-
texts, including probabilistic modeling [10], machine learning [26],
approximate storage [29], and the use of sampling-based approxi-
mation that produce estimated outputs with error bounds [2, 11].

For many applications, uncertain data should be represented
as probability distributions or estimated values with error bounds
rather than exact values. Failure to properly account for this uncer-
tainty may lead to incorrect results. For example, Bornholt et al. have
shown that computing speeds from recorded GPS positions can lead
to absurd values (e.g., walking speeds above 30mph) when ignoring
uncertainties in the recordings [4]. Unfortunately, developing ap-
plications for processing uncertain data is a major challenge from
both the mathematical and performance perspectives. Thus, in this
paper, we propose and evaluate a general framework that signifi-
cantly eases this challenging task. Embedding such a framework in
systems such as MapReduce and Spark will make it easily available
to many developers working in many application domains.

Our framework is based on techniques that allow programmers
to modify precise implementations of DAG computation nodes to
handle uncertain inputs with modest effort. Uncertainties can then
be propagated locally across each node of the DAG from the point
where they are first introduced to the final outputs of the compu-
tation. More specifically, we use Differential Analysis (DA) [3] to
propagate uncertainties through DAG nodes that are continuous
and differentiable functions. For semi-continuous functions, we
propagate uncertainties through a combination of DA and Monte
Carlo simulation, where our framework automatically selects the
appropriate method based on the input distributions and the loca-
tions of function discontinuities. For all other function types, we
use Monte Carlo simulation.

95

https://doi.org/10.1145/3267809.3267833
https://doi.org/10.1145/3267809.3267833

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Ioannis Manousakis, Íñigo Goiri, Ricardo Bianchini, Sandro Rigo, and Thu D. Nguyen

0 10 20 30 40 50 60 70

SELECT age, CNT(customers)
GROUP BY age
ERROR 5% CONFIDENCE 95%

Weighted
Average

Approximate query Precise operator

?

C
u
st

.
p
e
r

A
g
e

1

..
.

(a) DAG application

(b) (c)

2

Age Normalized Revenue
3

Figure 1: (a) A DAG application with two logical nodes; (b) a
possible set of outputs (blue line with error bars) from the
first node; (c) the output from the second node should be a
probabilistic quantity rather than a precise value.

As an example of how a developer uses our framework, suppose
a company needs to run a revenue prediction model implemented
by a two-node logical DAG 1 shown in Figure 1(a). The first node
approximates the number of customers belonging to different age
groups in a database using BlinkDB [2]. The second node then
computes the revenue as a weighted average, with the (uncertain)
weights representing the predicted revenue per customer in a given
age group. While the approximation can significantly reduce the
execution time of the first node, it produces estimates with uncer-
tainties (error bounds), rather than precise values. A developer can
use our proposed framework to handle these uncertainties in the
second node by providing the derivatives for the weighted average,
which are essentially just the weights, with very few code changes
to the precise version. This small amount of additional work will
allow the answer to be computed as a distribution rather than an
exact value that gives a misleading impression of precision. In par-
ticular, a precise answer, e.g., red line in Figure 1(c), may predict
high revenue leading to profit while ignoring the left side of the
distribution in Figure 1(c), which indicates a significant possibility
of low revenue leading to an overall loss. Ignoring this possibility
can be dangerous if the company is risk-averse.

We implement the proposed framework in UP-MapReduce, an
extension of the Hadoop MapReduce, to handle uncertainty propa-
gation (UP). UP-MapReduce allows programmers to develop appli-
cations with UP in much the same way as their precise counterparts.
Added efforts come in the form of selecting the appropriate uncer-
tain Mapper and Reducer classes provided by UP-MapReduce and
respecting some required constraints on code structures (Section 5).
Developers can optionally provide closed-form derivatives for DAG
nodes that implement UP with DA to enhance performance.

We then leverage UP-MapReduce to build a toolbox of operations
(e.g., sum, multiply, logarithm) on uncertain data and modify ten
applications, including AI/ML, image processing, trend analysis,

1As explained in Section 4, small logical DAGs will often map to extremely large
execution DAGs with thousands of execution nodes running on large server clusters
when processing large data sets.

and model construction applications, to process uncertain data. Our
experience shows that UP-MapReduce is easy to use. Running two
of these applications on real data sets demonstrates the tremendous
potential for combining sampling-based approximation (early in the
DAG) with UP to reduce execution time while properly propagating
the introduced uncertainties to the final outputs. This propagation
allows users to intelligently trade off accuracy for execution time.
For example, in one application, execution time can be reduced by
2.3x if the user can tolerate errors of up to 5%. Further, in one of
the two applications, the original data set is a sample of network
probes and so any computation on this sample necessarily has to
deal with uncertainties. UP-MapReduce allows developers to easily
tackle these uncertainties.

We also perform extensive sensitivity analyses on small to large
execution DAGs (ranging up to tens of thousands of nodes), using
eight of the applications with synthetic data, which allows us to
adjust various input characteristics. Specifically, we explore the
impact of UP on the magnitudes of uncertainties (e.g., whether un-
certainties become worse after propagation), the accuracy of our UP
techniques, overheads of UP, and scalability. Our results show that
our UP techniques are highly accurate in most cases. Furthermore,
the performance overheads of UP using DA are very low – average
of 6% performance degradation – when closed-form derivatives are
provided. Performance overheads are more significant when using
DA with numerical differentiation or Monte Carlo simulation as
input size increases, but this performance impact can be reduced
by adding computation resources. Recall that these overheads arise
from the need to process uncertain data instead of exact values.
Finally, our results demonstrate that UP-MapReduce scales well to
a cluster with 512 servers.

In summary, our contributions include: (1) identifying existing
theories appropriate for UP and showing how to apply them to
DAG-based data processing frameworks, (2) designing and imple-
menting our proposed UP approach in a MapReduce framework
called UP-MapReduce, (3) implementing a suite of data processing
applications to explore the accuracy, performance, and scalability
of UP-MapReduce, and (4) showing that our approach is highly
effective in many scenarios, allowing applications to efficiently
account for data uncertainties.

2 BACKGROUND AND RELATEDWORK
In this section we first motivate the necessity for UP by present-
ing a (non-exhaustive) list of common uncertainty sources where
UP is required if the data uncertainties are not to be ignored. We
then proceed to discuss related work and in particular recent ap-
proximate methods that generate uncertainty as byproducts of the
approximation. Finally, we review previous work in uncertainty
estimation and belief propagation.
Sources of Uncertainty. Collecting data from imprecise instru-
ments such as temperature, position or other analog sensors often
introduces measurement uncertainty. In these applications, acquir-
ing precise data is typically not an option, but it is usually possible
to tune precision at the expense of resources such as more expensive
sensors, higher response time or energy consumption. An example
of such a trade-off is the potential for a sensor network to enter a

96

Uncertainty Propagation in Data Processing Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

low-power state to conserve energy at the expense of providing
lower quality measurements.

Similarly, model uncertainty is introduced when computational
models used in applications do not precisely describe physical phe-
nomena. For example, in structure strength analysis, one may sim-
ulate the macroscopic impact of wind on a high-level model of a
bridge structure, rather than modeling the forces on the individual
molecules (which might be intractable).

Approximate computing is an emerging source of approximation
uncertainty. In this setting, it may be possible for the user to trade-
off precision (how much uncertainty) against execution time and/or
energy consumption. Examples include iterative refinement tech-
niques or aggregate approximation schemes (via sampling) such as
BlinkDB [2] and ApproxHadoop [11]. This is a particularly interest-
ing scenario since execution time savings achieved via approxima-
tion may be offset by the necessity for UP in subsequent nodes of a
computation DAG. Other types of approximation-induced uncer-
tainty include statistical estimators (i.e., from maximum likelihood
or a posteriori estimation) and approximate storage [29].
Approximate computing with bounded errors. Extensive past
work has been done in approximate computing with quality esti-
mates by the systems, hardware and database communities. The
purpose of approximate computing is to reduce the required re-
sources (e.g., execution time and/or energy consumption) by relax-
ing the precision of the output but also providing estimates on the
(uncertain) output quality – for example, the mean and variance of
the output values.

Most prior works have focused on reducing the input set by
sampling and/or dropping computation. For example, the database
community has long considered the problem through approximate
query processing. There, database systems sample the input data
set and/or drop sub-queries to accelerate top-level queries with the
ultimate goal of reducing response time, increasing throughput [1,
16, 38], and/or even providing response time guarantees [2].

Some works identify computational blocks (at compile or run-
time) that can be dropped for tunable approximation with or with-
out accuracy estimates [24, 28]. ApproxHadoop accelerates the
computation of large-scale aggregations (i.e., sum, count, average)
by combining sampling and computation drop [11] while providing
error estimates. Others provide energy bounds by online tuning of
the approximation levels [14].

Finally, the hardware community approaches the problem by
trading hardware accuracy for energy efficiency, performance and
transistors. For example, Esmaeilzadeh et al. [9] designed an ISA
extension that provides approximate operations and proposed a
micro-architecture that implements approximate functional units
such as adders, multipliers, and approximate load-store units (a
problem that was also tackled later by Miguel et al. [23]).
Uncertainty estimation and belief propagation. Prior work
has been proposed to handle the uncertainty introduced by approx-
imate systems and to perform belief propagation where uncertainty
and prior beliefs are combined to perform inference. Approximate
programming, for example, seeks to design systems and program-
ming languages that implement and bound the errors of various
arithmetic and logical operators (addition, multiplication, and com-
parison) when handling uncertain (probabilistic) types.

For example, Uncertain<T> [4] is a language construct that can
be used to estimate the output distribution of a graph of basic op-
erations that compose a program. Uncertain<T> can be used for
inference as well, by using Bayesian statistics to derive the posterior
distribution. Others have worked on probabilistic programming to
implement type systems [5, 34] and compiler transformations [6, 25]
to handle uncertainty, error bounding, and inference for uncertain
programs. Sampson et al. [30] worked on decision making under un-
certainty which is necessary to implement branches and assertions
in programs. In contrast with arithmetic operations, comparison
operators are more challenging, as they involve estimating the tail
of the (unknown) distribution – much like our approach for UP
through semi-continuous functions.
Differentiation from prior work. We differentiate from past
work in uncertainty estimation as being the first to bring uncer-
tainty propagation techniques to large-scale computational DAGs.
In contrast to prior work (e.g., Uncertain <T> and ApproxHadoop)
where uncertainty estimation is performed only for basic arithmetic
and logical operations, we can handle arbitrary functions. At this
high level of abstraction, new challenges arise. For example, ac-
counting for covariances between uncertain data items may become
a limiting factor in the performance and scalability of computations
on uncertain data.

Our method also offers, to the best of our knowledge, the only
known computationally tractable (and as our evaluation will show,
potentially with low overheads) large-scale uncertainty propaga-
tion. Several other UP methods, such as polynomial chaos expan-
sion and fast integration can also be used (in fact to estimate the
actual distribution of Y instead of just computing the first two mo-
ments) [13, 19]. However, these methods are very computationally
expensive, especially with increasing number of variables as noted
by Lee and Chen [19]. We also do not perform any inference or
multi-dimensional convolutions (as in Uncertain <T>) which suffer
from high computational complexity and limit their applicability to
only a few hundred input variables per node in the execution DAG.
On the contrary, we show that our approach can handle millions
of input variables with relatively low overhead.

3 UNCERTAINTY PROPAGATION
In this section we introduce our proposed methods for handling
uncertain inputs at a DAG node. Specifically, we discuss how to
(approximately) compute Y = f (X), where f is an arbitrary func-
tion without side effects, representing the computation of a DAG
node, X is a set of random variables representing inputs with un-
certainties, and Y is a set of random variables representing out-
puts with uncertainties. Depending on the nature of f (continuous,
semi-continuous or discrete), we leverage a set of three statistical
methods to approximate the mean µYi and the variance σ 2

Yi
for

each Yi in Y. These methods are described below.

3.1 UP Through Continuous Functions
We use first-order Differential Analysis (DA) to approximate the
first two moments of Y, i.e., mean and variance, for functions f
that are continuous and differentiable [3]. The general strategy is
to compute Y by approximating f using its first-order Taylor series
at the expected value of X. This approximation is accurate if f is

97

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Ioannis Manousakis, Íñigo Goiri, Ricardo Bianchini, Sandro Rigo, and Thu D. Nguyen

X Y

μX
3σX

μY
3σYf

∂f
∂X

(μX)

f Ym

Y1

...

Xn

X1

...

σX1

σXn
...

σY1

σYm
...σXij

σYkl

(a) (b)

Figure 2: Uncertainty propagation through differentiable
functions: (a) a single-input, single-output function, and (b)
a multiple input-multiple output function.

roughly linear around the support (in other words, neighborhood)
of X; errors are being introduced otherwise. As shall be seen in
Section 7.3, using the first-order Taylor series gives good accuracy
for the majority of the applications we study.

For simplicity, we present DA equations for a single output value
Y; we refer the reader to [3] for the full derivation of the multiple
input, multiple output case. Let Y = f (X), withX = {X1,X2, ...,Xn }.
We can compute an approximation Ŷ of Y using the first-order
Taylor series around a given point X0 = {X 0

1 ,X
0
2 , ...,X

0
n } as:

Ŷ = α0 +
n∑
i=1

αi (Xi − X 0
i) (1)

α0 = f (X0) and αi =
∂ f

∂Xi
(X0)

We then compute an approximate mean µ̂Y by setting X0 =
µX = {µX1 , µX2 , ..., µXn } and computing the expected value of Ŷ .

µ̂Y = E[Ŷ] = E

[
α0 +

n∑
i=1

αi (Xi − µXi)

]
(2)

= α0 +
n∑
i=1

(αiE[Xi] − αi µXi)

= α0 +
n∑
i=1

(αi µXi − αi µXi) = f (µX)

Analogously, we can derive an estimate of the variance σ̂ 2
Y using

the first-order Taylor series:

σ̂ 2
Y =

n∑
i=1

α2i σ
2
Xi
+

n∑
i=1

n∑
j=1, j,i

α2i α
2
j σ

2
XiX j

(3)

where σ 2
XiX j

is the covariance of Xi and X j . If we assume that the
inputs are independent, so that σXiX j = 0, i , j, then Equation 3
reduces to the left summand.

We illustrate the computation of the mean and variance for the
single-input, single-output case (Y = f (X)) in Figure 2(a). For the
general case with multiple inputs and multiple outputs, one must
also be concerned with the covariances between the outputs as
shown in Figure 2(b). In general, these covariances may be non-
zero. Thus, if the multiple outputs are being used as inputs to a later
stage of computation as in Y = f (X),Z = д(Y), then we cannot
assume that Yi and Yj , i , j , in Y are independent. Rather, it would

Y1
Y2

p: precise
s: uncertainty source
u: uncertainty propagation

p
I1
I2

p

s

u u

Figure 3: An example DAG where nodes labeled with p are
precise computations, s introduce uncertainty (e.g., via a
sampling-based approximation technique), and u require
uncertain propagation.

be necessary to compute the covariances σ 2
YiYj

and use them when
approximating Z [3].

3.2 UP Through Semi-continuous Functions
We can leverage the above approach for semi-continuous functions
when the support of each Xi in X falls mostly or entirely within a
continuous and differentiable part of the function. We adopt two
approaches for checking with high confidence which intervals of X
lie in continuous parts. The first assumes each Xi is approximately
normal allowing the estimation of the support using any desired
confidence interval through the corresponding covariance matrix
of the input. The second approach makes no assumption about
the distribution of X. It instead uses a multivariate generalization
of the Chebyshev’s inequality [17] to bound the probability that X
lies within any interval. For example, suppose we define a filter
function as f (X) = 1 when X > α and 0 otherwise. This is a simple
semi-continuous function defined on two intervals. Our framework
automatically performs the required run-time checks for each Xi .
In this case, it will check if X lies entirely (or mostly) in (α,+∞) or
(−∞,α]. If the condition is satisfied, it will leverage DA to propagate
through the filtering function which in this case leads to an exact
result. If X ’s support spans the discontinuity, our framework is
forced to resort to Monte Carlo simulation which we discuss next.

3.3 UP Through Black-box Functions
We use Monte Carlo simulation to approximate Y for functions
f that do not meet (or the developers to not know whether they
meet) the requirements for DA. Specifically, we evaluate f on n
randomly drawn samples of X (input) and use the outputs as an
approximation of Y. As n → ∞, the empirical distribution obtained
for each Yi converges to the true distribution. To choose n, we use
the following expression which bounds the difference between the
empirical and the true distribution [21]:

P

(
sup
y∈R

(F̂i ,n (y) − Fi (y)) > ϵ

)
≤ 2e−2nϵ

2
(4)

where F̂i ,n (y) is the empirically derived CDF for Yi and Fi (Y) is the
actual CDF for Yi . For example, to approximate the CDF of Fi (y)
with a 99% probability of achieving an accuracy of ϵ = 0.05, one
would need n = 53 samples.

To generate accurate samples, one must know the joint density of
X and pay the heavy computational cost of any rejection-sampling
algorithm. Unfortunately, that cost grows exponentially with an
increasing size of X and thus we resort to two approximations. The

98

Uncertainty Propagation in Data Processing Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Xn

Xn-1

X2

X1

...

g

μ
3σ

g

μ
3σ

g

μ
3σ

Y1

Y2

Y3

Ym-1
Ym

Z1

Z2

f

f

f

f

Ym-2

...

μ
3σZ3

Figure 4: An example detailed view of the nodes labeled u in
Figure 3, with f being computed in the first logical node and
д being computed in the second logical node.

first generates samples from the input marginalsXi , when provided
or previously estimated, and ignores covariances.

In the absence of full distributional information, the second
approximation assumes that each input is normally distributed with
the same mean and covariance matrix as the unknown distribution.
Surprisingly, although the estimated distribution Ŷ is only a coarse
approximation of the actual but unknown Y , their corresponding
mean and variances are similar. To see why, recall that in Eq. 3 we
showed that the mean and variance estimation of Y depends solely
on the mean and variance of X. Thus, simulating (drawing samples)
from any X that matches the required mean and variances, will
accurately approximate the corresponding values for Y .

4 UP IN DAG DATA PROCESSING
We now discuss how to apply the UP techniques introduced in
the last section to data processing DAGs. Figure 3 shows a small
example DAG, where uncertainty is introduced in the node labeled s
(e.g., via a sampling-based approximation technique). Uncertainties
then must be propagated through the two u nodes following s .

Figure 4 shows an example detailed view of the two u nodes
designed to highlight the challenges of implementing UP in DAG
data processing. This example can correspond to transformations
in a Spark program or Map and Reduce phases in a MapReduce
program. This figure shows that, in general, we must handle UP
through multi-input, multi-output functions for implementation in
DAG data processing frameworks. Further, inputs may have non-
zero covariances; e.g., Ym−2 and Ym−1 are generated from the same
input, and thus are likely to have a non-zero covariance. Finally,
the number of inputs and outputs may not be known statically at
development time; e.g., a reduce() function in MapReduce has to
accept an arbitrary number of values (> 0) for each key.

It is relatively straightforward to implement UP through black-
box functions using Monte Carlo simulation (henceforth called UP-
MC) despite the above complexities. This technique treats any node
of the DAG as a black box, dynamically generates samples from the
input set (each sample contains a single random value drawn from
the distribution of each input data item), and dynamically computes
the mean and variance for each output using the empirically derived
distributions. Recall that we assume normal input distributions in
the absence of this information and we ignore covariances between
the inputs when constructing samples (Section 3.3), both of which
may lead to inaccuracies.

The implementation of Differential Analysis (henceforth called
UP-DA) is more challenging. Specifically, when a DAG node pro-
ducesmultiple outputs, we view it as being implemented bymultiple
sub-functions, each producing one of the output. For example, if a
function H (X0,X1,X2) produces two outputs Y1 and Y2, then it is
expressible as Y1 = h1(X0,X1,X2) and Y2 = h2(X0,X1,X2). In fact,
each sub-function may depend only on a subset of the inputs; e.g.,
Y1 = h1(X0,X1) and Y2 = h2(X0,X2). In this case, the UP implemen-
tation must be able to identify the inputs used by each sub-function
to correctly compute the (co) variances (Equation 3).

Thus, if a function such as f or д in Figure 4 produces multiple
output values, each output must be produced by an invocation of a
sub-function. The output values can be produced by multiple invo-
cations of the same sub-function, or invocation of several different
sub-functions. Each invocation must go through an UP interface so
that we can track the input-to-output dependencies.

Input covariances can require additional data flow to be added
to the DAG for computing output variances and covariances. For
example, consider the scenario where X1 and Xn have a non-zero
covariance; even though Y2 and Ym are generated by different in-
vocations of f , the covariance between X1 and Xn will affect the
variance estimates for Y2 and Ym . The (previously independent)
computation of Y2 and Ym now requires the read-only covariance
matrix to be present in all nodes. In general, to propagate covari-
ances properly, each node of the DAG must have the complete
covariance matrix of the sibling inputs. This requirement is chal-
lenging to implement in practice since it introduces additional
data propagation and dependencies among execution DAG nodes,
both of which may degrade performance and limit scalability. Our
current implementation of UP in MapReduce (Section 5) does not
handle all possible covariances, leaving the exploration of the full
issue for future work. Meanwhile, our results in Section 7 show
that this limitation does not affect accuracy significantly in most
applications that we study.

As shall be seen, having closed-form partial derivatives can sig-
nificantly reduce the performance overheads of UP-DA compared to
numerical differentiation. Thus, an UP-DA implementation should
provide an interface for the programmer to provide closed-form
partial derivative functions when available. Since the number of
inputs may not be known at compile time, the interface must be suf-
ficiently flexible to allow for a parameterized implementation of the
partial derivatives. For example, a function that is symmetrical on
all inputs (e.g.,

∑
X 2
i) has the same partial derivative for all inputs

(e.g., 2Xi). In this case, the partial derivative can be implemented
using a single function parameterized by X and the index i .

Finally, Figure 4 has some interesting performance implications.
In the absence of covariances, UP is computed independently at
each DAG node, allowing DAGs with UP to be sped up with added
computation resources similar to without UP. However, speedup
will ultimately be limited by the longest executing node as this
“straggler” will determine the minimum execution time of the DAG.
For example,дmay be an aggregator function that takes inputs from
many different invocations of f . If д has to aggregate a large num-
ber of inputs, then UP will require the evaluation of many partial
derivatives (and possibly many numerical differentiations) for Dif-
ferential Analysis or multiple evaluations of a function with many

99

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Ioannis Manousakis, Íñigo Goiri, Ricardo Bianchini, Sandro Rigo, and Thu D. Nguyen

inputs for Monte Carlo. Thus, an invocation of д with a compara-
tively large number of inputs can become a performance bottleneck.
Fortunately, we can limit the impact of these stragglers by giving
more resources to them. In particular, numerical differentiation and
derivative evaluations for different inputs are independent and so
can be executed in parallel. Monte Carlo runs are also independent.
Parallelizing execution in both cases is quite easy, especially for
many-core servers.

5 HADOOP UP-MAPREDUCE
As a proof of concept, we extend Hadoop MapReduce to include
the above UP techniques in multi-stage DAG applications. We first
show how our approach can be applied to the MapReduce paradigm.
We then describe our implementation called UP-MapReduce.

5.1 UP-MapReduce Overview
In MapReduce, each program runs in two phases, Map and Reduce.
In the Map phase, a user-written side-effect-free map() function
is invoked per each input (key, value) pair, and produces a set of
intermediate (key, value) pairs, where multiple pairs may have
the same key. In the Reduce phase, a user-written side-effect-free
reduce() function is called per intermediate key and the set of
values associated with that key (produced by all invocations of
map() during the Map phase), and produces a set of keys, each with
an associated set of values [8]. MapReduce programs can further
be chained together to form complex DAGs.

Figure 4 now maps readily to a MapReduce program (except that
the keys are not shown), with the Map phase invoking the map
function f and the Reduce phase invoking the reduce function д.
It is important to note that while the MapReduce model defines
that map() only takes one (key, value) pair as input, the value may
be a set; e.g., a line of words. Thus, we implement both map() and
reduce() as multi-input, multi-output functions. Assuming that
only values are uncertain (keys are exact), the discussion in Sec-
tion 4 applies directly to the implementation of UP-MapReduce.
Each map() or reduce() invocation expands to one or multiple UP
calls through UP-MapReduce, which automatically estimates the un-
certain outputs. UP-MapReduce then streams uncertain outputs
from map()→ reduce() while in the case of multiple chained pro-
grams, temporarily writes these values to HDFS where the next
program in the DAG consumes them.

To support functions with multiple outputs, we introduce the
notions of sub-maps and sub-reduces, with each map() (reduce())
containing one or more distinct sub-maps (sub-reduces). Each out-
put must then be produced by the invocation of a sub-map (sub-
reduce) on the correct subset of inputs. We adopt similar approach
for implementing semi-continuous map() (reduce()) functions
(Section 3.2); user-specified continuous intervals pair with exactly
one sub-map (or sub-reducer respectively).

Due to MapReduce limitations, where map() or reduce() invo-
cations are independent, we currently do not handle the case where
input covariances require additional data flow for computing output
covariances; e.g., the previously mentioned case of X1 and Xn in
Figure 4 having a non-zero covariance. We do support covariances
for the inputs and outputs of a single invocation.

class scale-map extends UPDAContinuousMapper{
HashMap<double, double> weights;
double k; //current key
double eval(double contacts)

return contacts*weights(k);
double derivative(double in, int n, double con)

return weights(key); //inputs are empty vectors
void map(Text key, PV val) {

init(key, val); //parse input and init data structures
this.continuousUP(); //estimate mean and variance
emit(key, new PV(this.getMean(), this.getStd()));

}
}

class avgReducer extends UPDAContinuousReducer {
double eval(double[] wContacts)
return sum(wContacts)/wContacts.length;

double derivative(double in, int n, double con)
return 1/n; //inputs are empty vectors

void reduce(Text key, PV vals) {
init(key, val); //parse input and init data structures
this.continuousUP();
emit(key, new PV(this.getMean(), this.getStd()));

}
}

Figure 5: A simple UP-MapReduce program. For readability
purposes, we have changed some arrays to single objects.

5.2 Implementation
We implement UP-MapReduce as an extension of Apache Hadoop
2.7. The extension comprises three Mapper and three Reducer
classes that implement UP-MC, UP-DA for continuous functions,
and UP-DA for semi-continuous functions, for Map and Reduce,
respectively. Developers must choose the correct classes when
implementing programs for UP-MapReduce. Our extension also
introduces the uncertain type PV (probabilistic value) which im-
plements random variables. A PV variable contains one or more
random variables, each described by a mean, a variance-covariance
matrix, and possibly an entire empirical distribution. Below, we
briefly describe the necessary Reducer classes. UP is implemented
similarly for the Mapper classes.
UPMCReducer. This class implements UP-MC for reduce. It contains
a PV object used to store the outputs, two abstract methods eval()
and reduce(), and a reduceWithUP() method. The programmer
needs to implement the reduce function (e.g., sum) in eval(), which
accepts a variable number of double inputs and returns a variable
number of double outputs. reduce() accepts a string key and
a variable number of inputs in serialized form. reduceWithUP()
implements UP-MC, and accepts a variable number of PV inputs.
It computes the PV outputs using multiple invocations of eval()
using samples derived from the PV inputs.

A developer would then write her Reducer class by inheriting
from this class, implementing eval() and reduce(). reduce()
should first parse the input, then call reduceWith UP(), and finally
emit the PV object. It is critical that reduce() does not perform
any computation on the inputs that affect the output outside of
eval(). The developer can specify that eval() should be invoked
multiple times, with each invocation processing a particular subset
of the inputs. This feature implements the multi-input, multi-output
design via sub-maps and sub-reduces.
UPDAContinuousReducer. This class implements UP-DA for con-
tinuous functions. The class adds an abstract method derivative()
that accepts the inputs X in the form of an array of doubles, the

100

Uncertainty Propagation in Data Processing Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Application Kernel Shorthand
Uncertain toolbox Basic operations N/A

Matrix multiplication Linear transformations mm
Regression Linear regression[31] linreg
Clustering k-means[15] kmeans

k-nearest neighbors p-norms [12] kNN
Solving linear systems Jacobi iteration [27] linsolve
Voice/image recognition Eigenproblem [18, 33] eig

Compression SVD [36] svd
Data filtering Filter [39] filter

Trends in social media Composite tsocial
US internet latency estimation Composite latency

Table 1: Applications extended to handle uncertain inputs
using UP-MapReduce.

index i to compute ∂f
∂Xi

, an array of constants that can be used as

weights and outputs a double representing ∂f
∂Xi

(X). The developer
implements this method to provide a closed-form derivative for
UP-DA. The class also implements a reduceWith UP()method that
overrides its parent’s method with an implementation of UP-DA.
This method uses derivative() if it has been implemented, and
numerical differentiation otherwise. It also uses input covariances,
but expect the input covariance matrix to be loaded into the Hadoop
read-only cache externally and prior to the execution of the Reduce
phase. Then, it calls eval() as needed for evaluating the reduce
function. The developer must implement eval() and reduce() as
described above.
UPDASemiContinuousReducer. This class implements UP-DA for
semi-continuous functions and inherits from UPDAContinuousRed-
ucer. It allows the developer to specify a list of discontinuities in
the reduce function and the range of the support of each input that
must be within a continuous portion of the function. It implements
a reduceWith UP() method that checks the support of each input
against the discontinuities (with the desired accuracy), and chooses
to use UP-MC or UP-DA as appropriate. No further implementation
is required from the developer.
Example UP-MapReduce program. Figure 5 shows the code for
an UP-MapReduce program that computes a weighted average
(secondDAGnode in Figure 1) in the presence of input uncertainties.
Changes compared to a precise version are quite minimal.
Parallelization ofMCandnumerical differentiation.Wehave
extended the UP Reducer implementations to use multiple threads
to speed up the execution of Monte Carlo simulation and numerical
differentiation on servers with multi-core and/or hyperthreaded
processors.

6 APPLICATIONS
We have built a toolbox of common operations (e.g., sum) and modi-
fied ten common data processing applications using UP-MapReduce
to process uncertain data. We list the applications in Table 1, along
with the kernels comprising each application and shorthand names
which we use later in the evaluation section. Below, we briefly
discuss each one.
1) Uncertain toolbox.We apply UP-DA to a variety of continuous
operations such as summation, multiplication, logarithms, exponen-
tiation and trigonometric functions with known simple closed-form
derivatives. We also include comparison and min/max operations

(via UP-DA and UP-MC, respectively). We combine all the above
operations to create a toolbox of uncertain elementary operations
which can be used as building blocks to construct richer appli-
cations. In UP-MapReduce, these uncertain blocks may represent
either a logical UP-map or a logical UP-reducer but at runtime, they
will expand according to the required dataflow to one or multiple
nodes in the execution DAG.
2) Matrix multiplication (mm). The multiplication of two ma-
tricesA (n×m) andB (m×p) can be performed by computing the ele-
ments of the outputmatrixAB (n×p) asABi j = f (Arowi ,Bcolumnj)

=
∑m
k=1AikBk j (the inner product of Arowi and Bcolumnj). A

MapReduce implementation can use the Map phase to read A and
B and emit pairs (ki j , Aik) and (ki j , Bk j) for 0 < i ≤ n, 0 < j ≤ p,
and 0 < k ≤ m. The reduce() function can then sort the Aik ’s and
Bk j ’s into a sequence Ai ,1,Ai ,2, ...,Ai ,m,B1, j ,B2, j , ...,Bm, j , and
then compute the inner product.

Applying UP-DA is then done as follows. The only change
needed for map() is the handling of PV rather than precise val-
ues. UP is not needed because no computation is being done. The
reduce() is rewritten to call eval() after properly arranging the
inputs, followed by a call to continuousUP(). eval() computes
the inner product. The partial derivatives for inputs from A is
∂f

∂Aik
= Bk j , and vice versa for inputs from B.

3) Regression (linreg). Fitting hyperplanes to observations is a
frequent task in analytics. In particular, linear regression often
relies on the least-squares method, where the sum of the squared
differences between the hyperplane and the observed points is
minimized. We base our application on linear regression, i.e, we are
looking for Y = αX + β . In the presence of noisy observations with
known means and variances, we estimate the mean and variance
of α and β .
4) Clustering (kmeans). Assigning observed data to clusters with
k-means is frequent in data exploration. Given a fixed number of
clusters and a sequence of observed data points, k-means performs
an iterative algorithm, which (may) converge to a solution that
minimizes the normed distance between all the points and their
corresponding clusters. In the presence of uncertain data points, we
extend the precise k-means algorithm with UP to estimate the mean
and variance of the estimated cluster coordinates. The algorithm
will then operate as a logical DAG with depth equal to the number
of iterations required for k-means to converge. The logical DAG
will then expand in runtime, to a large execution DAG where UP-
MapReduce will propagate the uncertainty at every node. As an
example, ford data points, c centroids and n iterations the uncertain
execution DAG will comprise of (d2 × c + 1) × n nodes.
5) k-nearest neighbors (kNN). A common classification method
is performed by estimating the k nearest neighbors around a data
point. This computation primarily involves calculating p-norms,
which measure distance in multi-dimensional spaces. We extend
the traditional notion of norm with UP to estimate the mean and
variance, when the input coordinates are uncertain.
6) Solving systems of linear equations (linsolve). In order to
solve large (n×n) systems of linear equations, in the form ofAx = b,
one can use the Jacobi method to find the unknown x. Jacobi is an
iterative procedure that progressively refines the solution x. We

101

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Ioannis Manousakis, Íñigo Goiri, Ricardo Bianchini, Sandro Rigo, and Thu D. Nguyen

extend Jacobi to support uncertain A and/or b inputs. Then, we
compute the mean and variance for each element of x.
7) Finding eigenpairs (eig).Computing eigenpairs (and especially
the dominant eigenvalue and eigenvector) is the central task in solv-
ing differential equations and computing eigenfaces. The power
iteration iteratively calculates the dominant eigenpair of an in-
put matrix. We create our own version of the power iteration to
handle uncertain input data. Specifically, we combine basic uncer-
tain operations (division), mm and Euclidean norms as previously
shown to build the necessary iteration. The output is then a random
eigenvalue and a random eigenvector.
8) Compression (svd). An effective data compression method is
the Singular Value Decomposition (SVD). The SVD of an input
matrix A is the key kernel in solving problems such as data com-
pression, but also principal component analysis, weather prediction,
and signal processing. We can calculate the components of SVD (U ,
Σ, and V) by finding the eigenvalues of AA∗ and A∗A. In case A is
uncertain, we extend the precise SVD implementation with UP-DA
and in particular by using the uncertain toolbox and eig.
9) Data filter (filter). Data filters are common data manipulation
tasks in large-scale data processing systems, such as Apache Spark,
and built-in procedures in programming languages such as Scala.
We implement an uncertain compare-aggregator filter that handles
uncertain inputs. During the compare phase, the (uncertain) input
data are compared against a user-defined value. The statistics of
the intermediate result are forwarded to an aggregator function
which estimates the uncertainty of the final result.
10) Trends in social media (tsocial). A common task in social
media analysis is to study potential trends between variables of the
social graph. For example, one might want to discover correlations
between peoples’ age and number of followers in a social media site.
Assuming the data is stored in a database, a two-phase workflow (a
DAG whose logical nodes execute on different DAG processing sys-
tems) will first execute a GROUP BY query with stratified sampling
to approximate the average number of friends per age group (with
each group representing one day). This stage outputs the mean
number of friends and a variance for each age group. The second
phase performs uncertain linreg between the uncertain number
of friends vs. age using linear regression. It then outputs the mean
and variance for the slope and intercept of the fitted line.
11) Mean US internet latency estimation (latency). Suppose
that a content delivery network (CDN) operator wants to improve
the average perceived latency of its customers [35]. He then seeks
to maximize the US-wide 10-mile average latency by altering the
position of the CDN endpoints. To perform this task, the operator
first estimates (via sampling) the mean (10-mile) latency of some
candidate locations in the US. Obviously, the operator cannot esti-
mate the desired latency mean on every possible location in US, but
instead interpolates the nearby (unobserved) locations. To correctly
perform the interpolation though, one should consider that each
estimated mean is actually a distribution, as every estimate is being
constructed from the appropriate samples.

We replicate such a scenario and illustrate how UP can be com-
bined in a multi-stage uncertain workflow. The workflow comprises
the following stages 1) collect traceroute measurements (within

..
.

...
v1

vn

..
. f g

Figure 6:Monte-Carlo simulation is used to construct empir-
ical distributions for the outputs from repeated drawing of
random input samples and evaluating the complete applica-
tion DAG for each sample.
the US) from the iPlanes dataset [20], 2) estimate the mean for
each observed location using the samples, 3) use UP-MapReduce to
perform bi-linear interpolations to estimate the mean latencies of
unobserved locations and 4) use UP-MapReduce with an uncertain
weighted average to simulate the frequency of packet transmis-
sion from each location based on known population density to
ultimately obtain the mean and variance of the final estimate (pop-
ulation adjusted 10-mile mean latency).

7 EVALUATION
In this section, we evaluate UP-MapReduce by studying it’s accu-
racy, performance, and scalability. We begin by exploring the two
applications, tsocial and latency, that include sampling-based ap-
proximations and trade precision for reduced execution times. We
show that by developing these applications in UP-MapReduce we
can drastically decrease the execution time of both, while propagat-
ing the uncertainties introduced by the approximations. We then
explore the accuracy of our UP techniques, performance overheads,
and scalability via an extensive sensitivity analysis.

7.1 Evaluation Methodology
Input data sets.We leverage real datasets for the two approximate
applications under study. Specifically, we evaluate tsocial using
the Facebook social structure from SNAP social circles [22] and
latency using traceroute measurements from iPlanes [20]. For the
purpose of the sensitivity analysis (performance, precision and
scalability), we generate synthetic input data sets with varying
sizes and amounts of uncertainty for each application, similarly to
the synthetic data generation in [40]. For each data set, we first
choose a random mean value µ for each input item according to a
uniform distribution on a chosen range of values. We then set the
variance σ 2 for each input item to achieve a specific relative error
defined as 3σ/µ.
Baseline. We ran a large Monte Carlo experiment that executes
a precise version of each application multiple times to accurately
compute the empirical distributions for the outputs. Specifically,
each experiment consists of n = 104 runs of a precise applica-
tion, where each run is given inputs drawn randomly according
to the actual (known) input distributions. Note that this is dif-
ferent than using UP-MC for each node of an application’s DAG.
Here, the entire application is run from beginning to end in each
run as shown in Figure 6. For an iterative application, each run
executes all iterations for a given input to generate an output sam-
ple. This way, all correlations between data items passing through
the DAG are correctly preserved. The output samples from the
n runs are then used to construct empirical output distributions
from which we extract the mean and variance for each output. We
consider three different distributions for input uncertainty: normal

102

Uncertainty Propagation in Data Processing Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

(Baseline-Normal), skewed with +0.5 skewness (Baseline-Skewed),
and uniform (Baseline-Uniform).
Comparing UP with Baseline. We compare the mean value and
relative error for each output computed by UP-MapReduce against
the values produced by the corresponding Baseline experiments.
When an application produces one or a small number of outputs
(e.g., linreg), we show the comparison for the output with the
largest difference between the two approaches.When an application
outputs a vector or matrix (e.g., svd), we show the comparison
using the norm of the means ∥µ∥2 and the relative error defined as
∥3σ̂ ∥2/∥µ∥2. We expand on a case to show that using the norms
do not obfuscate large differences for a subset of estimated outputs.
We use the mean produced by Baseline-Normal to compute the
relative error for UP in our comparisons (since the mean produced
by UP is an estimate). All mean values computed by all methods
were very close together, so this choice had little impact.
Experimental platform. All (but scalability) experiments were
run on a cluster of 2 servers. Each server is equipped with two
Intel Xeon dual-core processors, 8 GB of DRAM, 1 Gbps network
interface and two 480 GB HDDs. The servers in this cluster ran
Ubuntu Linux Server LTS 14.04. Scalability experiments (Section 7.4)
were run on a cluster of 512 servers, where each server is equipped
with two Intel Xeon 16-core processors, 64GB of DRAM, a 10Gbps
network interface and four 3TB HDDs. All servers in that cluster
ran Windows Server 2012. Finally, all experiments were run with
UP-MapReduce (Apache Hadoop 2.7).

7.2 Approximate Computing and UP
We now leverage UP-MapReduce to build two multi-stage approx-
imate workflows (tsocial and latency). Both first sample their
initial dataset and produce uncertain intermediate values. Then, we
leverage UP-MapReduce to process these uncertain values in sub-
sequent stages, ultimately generating the final (uncertain) outputs.
Our results show that UP is critical for propagating the introduced
uncertainties, inform users of the magnitude of the final errors
and provide guidelines to control them by adjusting the amount of
initial approximation.

Specifically, tsocial is a two-stage approximate workflow com-
prising 1) the execution of an approximate query in BlinkDB [2] on
2 × 107 registered individuals, followed by 2) an uncertain linear
regression (linreg) in UP-MapReduce. The execution of the approxi-
mate query in BlinkDB drastically reduces the execution time of the
stage compared to a precise execution, but introduces uncertainties
in the form of estimated errors (variance). UP-MapReduce is then
used to propagate these uncertainties through the second stage
of the computation. The second four-stage workflow (latency)
approximates the mean US latency on a grid (2000 locations) by per-
forming latency measurements only on 68 locations. This workflow
comprises of 1) latency measurements which generate uncertainty
due to sampling 2) generate an uncertain 2-dimensional latency sur-
face on the obtained estimates from these 68 locations 3) perform
uncertain bilinear interpolation on the (unobserved) remaining
1932 locations and 4) perform an uncertain weighted average to
generate the population-weighted latency average.

Figure 7 (top) shows the execution times of tsocial (right y-
axis) for sampling rates ranging from 0.1% to 100% (precise). It also

R
eg

re
ss

io
n

er
ro

r
(%

)

0

10

20

30

0

5

10

15

E
xe

cu
tio

n
tim

e
(s

)

Output Error - max(a,b)
BlinkDB - Query
UP-MapReduce - Regression

-2 10-1 100 101 10210

100
0

50

100

0

50

100

Sampling rate (%)

E
xe

cu
tio

n
tim

e
(s

)

La
st

 s
ta

ge
 e

rr
or

 (
%

)

101 102

Output Error

UP-MapReduce
Processing

Sampling rate (%)

tsocial

latency

Figure 7: Obtained relative errors and execution times for
varying the sampling rate of two approximate workflows
(tsocial-top and latency-bottom).

shows the maximum relative error of the regression coefficients
for slope and intercept (left y-axis). We only show UP-DA-numDiff
for UP-MapReduce because execution times and errors for all three
techniques are similar given the relatively small number of output
items from BlinkDB (∼3× 104). We observe that significant savings
in overall execution time can be achieved despite the overheads of
UP. For example, a 5% sampling rate in the first logical DAG node
leads to a relative error of just 1.35% and 51% savings in execution
time (4s for BlinkDB and 2.9s for UP-MapReduce compared to 14.1s
for BlinkDB without sampling plus a negligible amount of time
for the precise linear regression computation). Overheads from UP
require a sampling rate of 80% before approximation can lead to
time savings for the workflow. After that, reduction in execution
time increases as the sampling rate decreases since the UP over-
heads are relatively constant. Reduction in workflow execution time
continues to increase until the smallest sampling rate of 0.1% for a
maximum of 67.8% savings. However, the relative error increases
rapidly to ∼30% after a sampling rate of 1%.

Similarly, Figure 7 (bottom) shows the execution times of post-
processing the obtained traceroute data (excluding the time to per-
form the traceroutes themselves) and the duration of the subsequent
stages (UP-MapReduce bi-linear interpolation and weighed aver-
age) for sampling latencies ranging from 1% to 100%. Note that a
100% sampling rate (∼2500 samples per observed location) indicates
that we process all the available data; it does not correspond to
sampling the entire network (which is not be possible to achieve).
The estimated means are still uncertain and they include errors
which should be propagated with UP.

Initially, and for sampling rates of 10 − 100%, we observe a gen-
erous reduction in execution time from ∼82 → 19s . For smaller
sampling rates, the savings cap at ∼12s . The execution times for
UP-MapReduce again stay unaltered as the number of observed
(60) and interpolant locations (∼5940) are constant (∼8.1s). The
output error of the weighted average, increases quadratically as we
decrease sampling rate. For example, sampling just 25% of the data,
we can reduce the execution time by 62.5% with an output error

103

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Ioannis Manousakis, Íñigo Goiri, Ricardo Bianchini, Sandro Rigo, and Thu D. Nguyen

of 9.01%. Similarly to tsocial, we only show UP-DA-numDiff, as it
was the UP method with the longest running times.

Interestingly in this case, there is no trade-off between post-
processing and UP-MapReduce execution times (in contrast to
tsocial). As we always estimate the means from samples, UP-
MapReduce is necessary to propagate the uncertainties. It is then
evident that without UP-MapReduce, we would be unaware of the
high potential workflow error (which can be as high as 92.8%).

7.3 Accuracy and Performance
We now perform a sensitivity analysis to evaluate the accuracy and
performance of UP-MapReduce. We include results from all previ-
ously described applications except the toolbox,mm and tsocial,
as they are included as part of the other applications under study.
We start by exploring the accuracy of UP-MapReduce estimation
of the means. Figure 8 plots the relative error (%) of the means (or
the corresponding Euclidean norm in case of multivariate outputs)
computed by UP-DA using numerical differentiation against the
Baseline-Normal. These results are identical for UP-MC. We ob-
serve that UP-MapReduce estimates the means with very low bias,
especially when the input relative errors are small (< 3%).

We next study the accuracy of the estimated relative errors. Fig-
ure 9(left) plots the relative errors computed by the three variants
of UP-MapReduce as a function of the input relative error for 3 rep-
resentative applications. The figure also plots the values produced
by the three Baseline variants. Figure 9(right) plots the execution
times of UP-MapReduce as a function of input size (the relative
error of the input does not affect execution time). The figure also
plots the execution times of precise versions, where there is zero
input variance.

We observe that input uncertainties can be relatively stable, con-
tract, or expand after propagation depending on the application.
UP-MapReduce is highly accurate in most cases; i.e., its estimated
relative errors are very close to the baseline values for 6 of the
applications (linreg, kmeans, latency filter, kNN and linsolve).
On the other hand, its estimated relative errors can also deviate no-
ticeably from the baseline values (eig, and svd) when input errors
are significant. In these cases, all three UP methods show similar
deviations from the baseline although there are small differences
between UP-MC and the other two approaches. Deviations for UP-
DA-numDiff and UP-DA-closedForm arise from the inaccuracies
introduced by Differential Analysis. Deviations for UP-MC arise
from the fact that UP-MapReduce performs the Monte Carlo com-
putation independently for each computation node in the DAG,
as opposed to executing the entire DAG multiple times as in the

0.1 0.5 1 3 15
Input error (%)

10-4

10-2

100

M
ea

n
er

ro
r
(%

)

k
N

N
la

te
n
cy

lin
so

lv
e

fi
lt

e
r

k
m

e
a
n
s

lin
re

g
e
ig

sv
d

Figure 8: Relative error ofmeans estimated byUP-DA versus
Baseline-Normal.

Baseline experiments. As previously mentioned, our current im-
plementation does not account for all covariances and does not
consider input covariances when drawing input samples in UP-MC,
all of which also contribute to the observed deviations.

To verify that the computed norms are not obfuscating large
differences between the UP-MapReduce estimates and baseline
results, we also study the differences for each output in the multi-
output applications. For example, Figure 10 plots CDFs of relative
errors produced by the Baseline-Normal and UP-DA-numDiff when
running linsolve for a 50 × 50 linear system. Observe that UP
accurately estimates the entire relative error CDF of multivariate
outputs for 1% input relative errors (Figure 10(a)), while for larger
relative errors of 15% UP precisely estimates a significant portion
of errors (79%), with significant deviations for only a very few
outputs. We observe similar trends in the remaining multivariate
applications (svd, kmeans, linreg, eig and latency).

Interestingly, UP-DA-closedForm adds very little overhead to
the precise version. This is because the derivatives for all functions
being evaluated in our applications are simple functions. For exam-
ple, the partial derivative with respect to xi of the inner product
⟨x, y⟩ =

∑n
i=1 xiyi is simply yi , an O(1) computation. Thus, even

though the number of evaluations of the derivative functions grows
linearly with the number of inputs, each evaluation is extremely
cheap and so the computations adds little overhead overall. Out of
the eight applications, the maximum overhead (compared to the
same application without UP) is 11.4% (kmeans) while the average
across them is 6.0%.

It is important to note that the overhead for UP-DA-closedForm
in general depends on the complexity of the derivatives; however,
in all applications under consideration it was less expensive to
evaluate derivatives of a function than the function itself. Thus, we
expect the overheads of UP-DA-closedForm to be routinely lower
than the ones for the other two UP techniques.

7.4 Scalability
We finally explore the scalability of UP-MapReduce by running
applications 3-11 on a cluster of 512 servers.We also run the original
precise applications. We choose the following input sizes: linreg
(16·106), kmeans (107), kNN (16·106), linsolve (9·106), eig (9·106),
svd (9 · 106), filter (16 · 106), latency (16 · 106 from 150 locations).
We illustrate our results (speedups) vs. increasing number of servers
from four representative applications in Figure 11. The rest follow
similar trends. We draw the following conclusions.

First, we observe that in all evaluated applications UP-DA-closed
Form achieves similar (on average 1.6% difference) scalability as the
precise version due to it’s low additive overhead. Thus, uncertainty
propagation does not deteriorate scalability (which as shown in
Figure 11 may be poor) of the original application. Second, UP-DA-
closedForm and UP-MC-monteCarlo show better scalability in all
applications (except kmeans) due to the increased work per task
(map and/or reducer) which amortizes the framework overheads.
We expect this improvement to hold in applications where UP does
not cause heavy execution imbalance (following observation).

Third, when evaluating kmeans with UP-DA-closedForm or
UP-MC-monteCarlo we observe lower scalability (in contrary with
the previous point). A study of executions shows that this is a

104

Uncertainty Propagation in Data Processing Systems SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

10
4

10
5

10
6

0

100

200

300
linsolve

10
4

10
5

10
6

0

200

400

600
linreg

10
6

0

500

1000

1500
kmeans

10
4

10
5

0

500

1000
eig

10
6

0

100

200
filter

10
4

10
5

10
6

0

200

400

600
kNN

10
4

10
5

0

500

1000
svd

UP-DA-numDiff
Precise
UP-MC-monteCarlo
UP-DA-closedForm

0.1 0.5 1 3 15
0

20

40
linsolve

0.1 0.5 1 3 15
0

0.1

0.2

0.3
linreg

0.1 0.5 1 3 15
0

0.5

1
kmeans

0.1 0.5 1 3 15
0

20

40

60
eig

0.1 0.5 1 3 15
0

5

10
filter

0.1 0.5 1 3 15
0

0.2

0.4

0.6
kNN

0.1 0.5 1 3 15
0

5

10

15
svd

0.1 0.5 1 3 15
0

2

4

6
latency

UP-MC-monteCarlo
UP-DA-numDiff
UP-DA-closedForm
Baseline-normal
Baseline-uniform
Baseline-skewed

10
4

10
5

10
6

0

100

200
latency

O
u

t
e

rr
o

r
(%

)

In error (%)

O
u

t
e

rr
o

r
(%

)
O

u
t

e
rr

o
r

(%
)

In error (%)

R
u

n
ti
m

e
 (

s
)

R
u

n
ti
m

e
 (

s
)

R
u

n
ti
m

e
 (

s
)

Input sizeInput size

Figure 9: Precision (left) and performance (right) of UP compared to Baseline.

result of straggler reducers which are caused from data imbalance
between different intermediate keys (centroids) and amplified either
by the numerical differentiation or the Monte Carlo simulation. The
imbalance is not noticeable in the precise and UP-DA-closedForm
versions but the other UP methods increase the running times
causing reduced scalability. These effects are even more noticeable
on UP-DA-numDiff without straggler parallelization which attains
a maximum speedup of just 10 when we utilize all our available
servers (not shown in Figure 11).

8 CONCLUSIONS
In this paper, we proposed an approach for propagating data uncer-
tainties through DAG computations. Specifically, we showed how
Differential Analysis can be used to propagate uncertainties through
DAG nodes implementing continuous (and semi-continuous un-
der certain conditions) and differentiable functions. Our approach
falls back to Monte Carlo simulation of nodes otherwise, but uses
statistical bounds to minimize overheads while achieving a target
error bounds. Our approach also allows the inter-mixing of Dif-
ferential Analysis and Monte Carlo simulation for different nodes
within a DAG, offering flexibility in the operations supported and
minimizing performance overheads

-0.6 -0.4 -0.2 0 0.2
0

0.2

0.4

0.6

0.8

1
Input error = 1%

-10 -8 -6 -4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1
Input error = 15%

...

UP-DA-numDiff
Baseline-Normal

Solution
Error

(a) (b)

Output error Output error

Figure 10: Comparison ofmultivariate error estimation (UP-
DA-numDiff vs. Baseline-Normal) when solving a 50×50 lin-
ear system for input errors of 1% and 15%.

1 8 32 128 512
10

0

10
1

10
2

eig

1 8 32 128 512
10

0

10
1

filter

1 8 32 128 512
10

0

10
1

latency

1 8 32 128 512
10

0

10
1

kmeans

P
ND
CF
MC

S
p
e
e
d
u
p

Number of servers

Figure 11: Scalability comparison between precise (P) and
implemented UP methods (UP-MapReduce).

We have shown how our UP approach can be applied to gen-
eral DAG frameworks. We have also implemented it in the UP-
MapReduce system. Experimentation with ten common data ana-
lytic applications revealed that UP-MapReduce is highly accurate
in many cases, while its performance overheads are very low –
an average of 6% performance degradation – when closed-form
derivatives are provided. When numerical differentiation or Monte
Carlo simulation must be used, overheads can become much more
significant as input size increases. Fortunately, the impact of these
overheads on overall execution time can be reduced by allocating
additional computing resources. Our scalability results show that
UP-MapReduce scales well to a cluster with 512 servers. Finally,
using two workflows that couple approximation with UP, we show
that significant reductions in execution time can be achieved with
approximation, despite the need for UP which propagates estimated
uncertainties to the final output.

9 ACKNOWLEDGMENTS
This work was partially supported by NSF grant CCF-1319755.

REFERENCES
[1] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Michael Jordan,

Samuel Madden, Barzan Mozafari, and Ion Stoica. 2014. Knowing when you’re
wrong: building fast and reliable approximate query processing systems. In
Proceedings of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 481–492.

105

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Ioannis Manousakis, Íñigo Goiri, Ricardo Bianchini, Sandro Rigo, and Thu D. Nguyen

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 29–42.

[3] Kai O Arras. 1998. An Introduction To Error Propagation: Derivation, Meaning and
Examples of Equation Cy= Fx Cx FxT. Technical Report EPFL-ASL-TR-98-01 R3.
ETH Zurich.

[4] James Bornholt, Todd Mytkowicz, and Kathryn S McKinley. 2014. Uncertain< T>:
A first-order type for uncertain data. ACM SIGPLAN Notices 49, 4 (2014), 51–66.

[5] Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. 2015. Probability
type inference for flexible approximate programming. In ACM SIGPLAN Notices,
Vol. 50. ACM, 470–487.

[6] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C Rinard. 2012.
Proving acceptability properties of relaxed nondeterministic approximate pro-
grams. ACM SIGPLAN Notices 47, 6 (2012), 169–180.

[7] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel processing of
massive data sets. Proceedings of the VLDB Endowment 1, 2 (2008), 1265–1276.

[8] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[9] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Ar-
chitecture support for disciplined approximate programming. In ACM SIGPLAN
Notices, Vol. 47. ACM, 301–312.

[10] Ludwig Fahrmeir and Gerhard Tutz. 2013. Multivariate statistical modelling based
on generalized linear models. Springer Science & Business Media.

[11] Íñigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. 2015.
ApproxHadoop: Bringing Approximations to MapReduce Frameworks. In Pro-
ceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 383–397.

[12] Peter Hall, Byeong U Park, and Richard J Samworth. 2008. Choice of neighbor
order in nearest-neighbor classification. The Annals of Statistics (2008), 2135–
2152.

[13] Jon C Helton and Freddie Joe Davis. 2003. Latin hypercube sampling and the prop-
agation of uncertainty in analyses of complex systems. Reliability Engineering &
System Safety 81, 1 (2003), 23–69.

[14] Henry Hoffmann. 2015. JouleGuard: energy guarantees for approximate appli-
cations. In Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 198–214.

[15] Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recognition
letters 31, 8 (2010), 651–666.

[16] Shantanu Joshi and Christopher Jermaine. 2009. Sampling-based estimators for
subset-based queries. The VLDB Journal—The International Journal on Very Large
Data Bases 18, 1 (2009), 181–202.

[17] Samuel Karlin andWilliam J Studden. 1966. Tchebycheff systems: With applications
in analysis and statistics. Interscience New York.

[18] Patrick Kenny, Gilles Boulianne, and Pierre Dumouchel. 2005. Eigenvoice model-
ing with sparse training data. Speech and Audio Processing, IEEE Transactions on
13, 3 (2005), 345–354.

[19] Sang Hoon Lee and Wei Chen. 2009. A comparative study of uncertainty propa-
gation methods for black-box-type problems. Structural and Multidisciplinary
Optimization 37, 3 (2009), 239–253.

[20] Harsha V Madhyastha, Ethan Katz-Bassett, Thomas E Anderson, Arvind Krish-
namurthy, and Arun Venkataramani. 2009. iPlane Nano: Path Prediction for
Peer-to-Peer Applications.. In NSDI, Vol. 9. 137–152.

[21] Pascal Massart. 1990. The tight constant in the Dvoretzky-Kiefer-Wolfowitz
inequality. The Annals of Probability (1990), 1269–1283.

[22] Julian Mcauley and Jure Leskovec. 2014. Discovering Social Circles in Ego
Networks. ACM Trans. Knowl. Discov. Data 8, 1, Article 4 (Feb. 2014), 28 pages.
https://doi.org/10.1145/2556612

[23] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. 2014. Load value
approximation. In Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE Computer Society, 127–139.

[24] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard.
2014. Chisel: Reliability-and accuracy-aware optimization of approximate com-
putational kernels. In ACM SIGPLAN Notices, Vol. 49. ACM, 309–328.

[25] Sasa Misailovic, Daniel M Roy, and Martin C Rinard. 2011. Probabilistically
accurate program transformations. In International Static Analysis Symposium.
Springer, 316–333.

[26] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[27] Yousef Saad. 2003. Iterative methods for sparse linear systems. Siam.
[28] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.

2014. Paraprox: Pattern-based approximation for data parallel applications. In
ACM SIGARCH Computer Architecture News, Vol. 42. ACM, 35–50.

[29] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. 2014. Approximate
Storage in Solid-State Memories. ACM Trans. Comput. Syst. 32, 3, Article 9 (Sept.
2014), 23 pages. https://doi.org/10.1145/2644808

[30] Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S McKinley, Dan
Grossman, and Luis Ceze. 2014. Expressing and verifying probabilistic assertions.
ACM SIGPLAN Notices 49, 6 (2014), 112–122.

[31] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 936. John
Wiley & Sons.

[32] Apache Spark. 2016. Apache Spark: Lightning-fast cluster computing. URL
http://spark. apache. org (2016).

[33] M. A. Turk and A. P. Pentland. 1991. Face recognition using eigenfaces. In
Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. 586–591. https://doi.org/10.1109/CVPR.1991.139758

[34] Steven Vajda. 2014. Probabilistic programming. Academic Press.
[35] Xiaofei Wang, Min Chen, Tarik Taleb, Adlen Ksentini, and Victor Leung. 2014.

Cache in the air: exploiting content caching and delivery techniques for 5G
systems. IEEE Communications Magazine 52, 2 (2014), 131–139.

[36] Jyh-Jong Wei, Chuang-Jan Chang, Nai-Kuan Chou, and Gwo-Jen Jan. 2001. ECG
data compression using truncated singular value decomposition. Information
Technology in Biomedicine, IEEE Transactions on 5, 4 (2001), 290–299.

[37] Tom White. 2012. Hadoop: The definitive guide. O’Reilly Media, Inc.
[38] Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. 2010. Continuous sampling for online

aggregation over multiple queries. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. ACM, 651–662.

[39] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: cluster computing with working sets. HotCloud 10 (2010),
10–16.

[40] Andreas Züfle, Tobias Emrich, Klaus Arthur Schmid, Nikos Mamoulis, Arthur
Zimek, and Matthias Renz. 2014. Representative clustering of uncertain data.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 243–252.

106

https://doi.org/10.1145/2556612
https://doi.org/10.1145/2644808
https://doi.org/10.1109/CVPR.1991.139758

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Uncertainty Propagation
	3.1 UP Through Continuous Functions
	3.2 UP Through Semi-continuous Functions
	3.3 UP Through Black-box Functions

	4 UP in DAG Data Processing
	5 Hadoop UP-MapReduce
	5.1 UP-MapReduce Overview
	5.2 Implementation

	6 Applications
	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Approximate Computing and UP
	7.3 Accuracy and Performance
	7.4 Scalability

	8 Conclusions
	9 Acknowledgments
	References

